Satoshi OMORI

Nishibori 4-chome, Sakura-ku, Saitama-shi, Saitama-ken, 338-0832 Japan
e-mail: rsj15335@nifty.com

December 22, 2021

Abstract

A first theorem stating that every positive or negative even integer is the difference between two primes is proved. By applying the proof of the first theorem a simple proof of the second theorem (Goldbach's conjecture) is presented. Using the first and second theorems a lemma stating that every positive or negative odd integer is expressed by the addition and/or subtraction of three primes is proved.

1. A FIRST THEOREM

Theorem 1: Every positive or negative even integer is expressed as the difference between two primes. Or every even integer n is expressed as $p-q$, where p and q are primes.

Proof: Let n be some positive even integer greater than or equal to 6 which cannot be expressed by the difference between two primes. And suppose that $p_{i}{ }^{\circ} \mathrm{s}(\mathrm{i}=1,2,3$, \ldots) are all primes from 3 to the prime p_{J+1}, where $p_{1}=3, p_{2}=5$, and n is greater than p_{J} and smaller than p_{J+1}, namely

$$
\begin{equation*}
p_{J}<n<p_{J+1} . \tag{1}
\end{equation*}
$$

Then n is expressed as $2 a p_{x}$, where a is a natural number, and p_{x} is a prime selected from p_{1} to p_{J}. Here n or $2 a p_{x}$ is expressed as the difference between a prime
and a composite integer. In other words n or $2 a p_{x}$ satisfies the following equations, where b_{i} 's are some odd integers greater than or equal to 3 and q_{i} 's are primes selected from p_{1} to p_{J} :
$2 a p_{x}+p_{1}=b_{1} q_{1}$
$2 a p_{x}+p_{2}=b_{2} q_{2}$
$2 a p_{x}+p_{3}=b_{3} q_{3}$
$2 a p_{x}+p_{J-1}=b_{J-1} q_{J-1}$
$2 a p_{x}+p_{J}=b_{J} q_{J}$.
It should be noted that p_{x} is smaller than or equal to p_{J} and $q_{i}{ }^{\prime}$ s are smaller than or equal to p_{J}, since $b_{i} \geqq 3$. We determine n or $2 a p_{x}$ which satisfies equations (2-1) to (2-J) by using mathematical induction. Firstly let us assume $J=2$, then equations (2-1) to $(2-J)$ will be
$2 a p_{x}+p_{1}=b_{1} q_{1}$
$2 a p_{x}+p_{2}=b_{2} q_{2}$
Then if we assume that p_{x} is p_{1} and q_{1} is p_{1}, equation (3-1) will be
$2 a p_{1}+p_{1}=b_{1} p_{1}$, namely
$2 a+1=b_{1}$ or $2 a=b_{1}-1$.
In this case if we further assume that q_{2} is p_{1} (case1: p_{x} is p_{1}, q_{1} is p_{1} and q_{2} is $p_{\underline{1}}$), equation (3-2) will be

$$
\begin{equation*}
2 a p_{1}+p_{2}=b_{2} p_{1}, \text { namely } p_{2}=\left(b_{2}-2 a\right) p_{1} . \tag{3-5}
\end{equation*}
$$

Since p_{2} will become a composite number by equation (3-5), case 1 does not hold true. Then if we assume that q_{2} is $p_{\underline{2}}$ (case2: p_{x} is p_{1}, q_{1} is p_{1} and q_{2} is p_{2}), equation (3-2) will be

A SIMPLE PROOF OF GOLDBACH'S CONJECTURE

$2 a p_{1}+p_{2}=b_{2} p_{2}$, namely $2 a p_{1}=\left(b_{2}-1\right) p_{2}$.
Equation (3-6) leads to

$$
\begin{equation*}
a=a^{\prime} p_{2} \text { and } 2 p_{1}=\left(b_{2}-1\right) \text { or } b_{2}=2 p_{1}+1 . \tag{3-7}
\end{equation*}
$$

By substituting $a=a^{\prime} p_{2}$ (a ' is a natural number) in $2 a p_{1}, n$ is expressed as
$n=2 a^{\prime} p_{1} p_{2}$.
Using n defined by equation (3-8) in equations (3-1) to (3-2) we obtain
$2 a^{\prime} p_{1} p_{2}+p_{1}=b_{1} p_{1}$ or $b_{1}=2 a^{\prime} p_{2}+1$
$2 a^{\prime} p_{1} p_{2}+p_{2}=b_{2} p_{2}$ or $b_{2}=2 a^{\prime} p_{1}+1$.
This means that case 2 holds true and n or $2 a^{\prime} p_{1} p_{2}$ satisfies equations (3-1) to (3-2).
Similarly if we assume that p_{x} is p_{2}, we obtain n defined by equation (3-8).
Secondly let us assume $p_{J-1}<n<p_{J}$, then to satisfy equations (2-1) to (2-J-1) n is expressed as
$n=2 a^{\prime} p_{1} p_{2} p_{3} \ldots p_{J-2} p_{J-1}$,
where a ' is another natural number.
Thirdly let us assume $p_{J}<n<p_{J+1}$, then equation (2-J) is written as
$2 a^{\prime} p_{1} p_{2} p_{3} \ldots p_{J-2} p_{J-1}+p_{J}=b_{J} q_{J}$.
Then if we suppose q_{J} is p_{j} (here $j=1,2, \ldots$, or $J-1$), equation (3-12) leads to
$2 a^{\prime} p_{1} p_{2} p_{3} \ldots p_{J-2} p_{J-1}+p_{J}=b_{J} p_{j}$, or
$p_{J}=p_{j}\left(b_{j}-2 a^{\prime} p_{1} p_{2} \ldots p_{j-1} p_{j+1} \ldots p_{J-1}\right)$.
This case does not hold true because p_{J} will become a composite number. Thus if we suppose q_{J} is p_{J}, equation (2-J) leads to

$$
\begin{align*}
& 2 a^{\prime} p_{1} p_{2} p_{3} \ldots p_{J-2} p_{J-1}+p_{J}=b_{J} p_{J}, \text { or } \tag{3-15}\\
& 2 a^{\prime} p_{1} p_{2} p_{3} \ldots p_{J-2} p_{J-1}=p_{J}\left(b_{J}-1\right) . \tag{3-16}
\end{align*}
$$

To satisfy equation (3-16) we need following equations (a " is another natural number)
$a^{\prime}=a{ }^{\prime \prime} p_{J}, \quad$ and
$2 p_{1} p_{2} p_{3} \ldots p_{J-2} p_{J-1}=b_{J}-1$.
By combining equations (3-17) and (3-11) n which satisfies the equations (2-1) to (2-J) can be expressed as (a is a natural number)
$n=2 a p_{1} p_{2} p_{3} \ldots p_{J-2} p_{J-1} p_{J}$.
However, the even number n which is defined by equation (3-19) is much greater than the above defined range ($p_{J}<n<p_{J+1}$). This means that there does not exist an even integer n which satisfies the equations (2-1) to (2-J) in the defined range.

In the above discussion if q_{J} which satisfies equation (3-12) does not exist, $b_{J} q_{J}$ will be some prime greater than p_{J}. This completes the Theorem 1.

And for $n=2$ or 4 the Theorem 1 holds true since $2=5-3$ or $4=7-3$. Thus using some primes p and q every positive even integer is written as

$$
\begin{equation*}
n+q=p \text { or } n=p-q . \tag{3-20}
\end{equation*}
$$

Furthermore equation (3-20) can be written as

$$
\begin{equation*}
-n=q-p \tag{3-21}
\end{equation*}
$$

which means that every negative even integer is expressed as the difference between two primes. This completes the Theorem 1.

2. A SECOND THEOREM (GOLDBACH'S CONJECTURE)

Theorem 2: Every even integer greater than 2 is expressed as the sum of two primes. Or every even integer n greater than 2 is expressed as $p+q$, where p and q are primes.

Proof: Let n be some positive even integer greater than or equal to 6 which cannot be expressed by the sum of two primes. And suppose that $p_{i}{ }^{〔} \mathrm{~s}(\mathrm{i}=1,2,3, \ldots)$ are all
primes from 3 to the prime p_{J+1}, where $p_{1}=3, p_{2}=5$, and n is greater than p_{J} and smaller than p_{J+1}, namely

$$
\begin{equation*}
p_{J}<n<p_{J+1} . \tag{4}
\end{equation*}
$$

Then n is expressed as $2 a p_{x}$, where a is a natural number, and p_{x} is a prime selected from p_{1} to p_{J}. Here n or $2 a p_{x}$ is expressed as the sum of a prime and a composite integer. In other words n or $2 a p_{x}$ satisfies the following equations, where b_{i} 's are some odd integers greater than or equal to 3 and q_{i} 's are primes selected from p_{1} to p_{J} :
$2 a p_{x}-p_{1}=b_{1} q_{1}$
$2 a p_{x}-p_{2}=b_{2} q_{2}$
$2 a p_{x}-p_{3}=b_{3} q_{3}$

$$
\begin{align*}
& 2 a p_{x}-p_{J-1}=b_{J-1} q_{J-1} \tag{5-J-1}\\
& 2 a p_{x}-p_{J}=b_{J} q_{J} . \tag{5-J}
\end{align*}
$$

It should be noted that p_{x} is smaller than or equal to p_{J} and q_{i} 's are smaller than or equal to p_{J}, since $b_{i} \geqq 3$. We determine n or $2 a p_{x}$ which satisfies equations (5-1) to (5-J) by using mathematical induction. Firstly let us assume $J=2$, then equations (5-1) to (5-J) will be
$2 a p_{x}-p_{1}=b_{1} q_{1}$
$2 a p_{x}-p_{2}=b_{2} q_{2}$
Then if we assume that p_{x} is p_{1} and q_{1} is p_{1}, equation (6-1) will be
$2 a p_{1}-p_{1}=b_{1} p_{1}$, namely
$2 a-1=b_{1}$ or $2 a=b_{1}+1$.
In this case if we further assume that q_{2} is p_{1} (case1: p_{x} is p_{1}, q_{1} is p_{1} and q_{2} is
p_{1}), equation (6-2) will be

$$
\begin{equation*}
2 a p_{1}-p_{2}=b_{2} p_{1}, \text { namely } p_{2}=\left(2 a-b_{2}\right) p_{1} . \tag{6-5}
\end{equation*}
$$

Since p_{2} will become a composite number by equation (6-5), case 1 does not hold true. Then if we assume that q_{2} is $p_{\underline{2}}$ ($\operatorname{case} 2: p_{x}$ is p_{1}, q_{1} is p_{1} and q_{2} is p_{2}), equation (6-2) will be
$2 a p_{1}-p_{2}=b_{2} p_{2}$, namely $2 a p_{1}=\left(b_{2}+1\right) p_{2}$.
Equation (6-6) leads to
$a=a^{\prime} p_{2}$ and $2 p_{1}=\left(b_{2}+1\right)$ or $b_{2}=2 p_{1}-1$.
By substituting $a=a^{\prime} p_{2}$ (a^{\prime} is a natural number) in $2 a p_{1}, n$ is expressed as
$n=2 a^{\prime} p_{1} p_{2}$.
Using n defined by equation (6-8) in equations (6-1) to (6-2) we obtain
$2 a^{\prime} p_{1} p_{2}-p_{1}=b_{1} p_{1}$ or $b_{1}=2 a^{\prime} p_{2}-1$
$2 a^{\prime} p_{1} p_{2}-p_{2}=b_{2} p_{2}$ or $b_{2}=2 a^{\prime} p_{1-}-1$.
This means that case 2 holds true and n or $2 a^{\prime} p_{1} p_{2}$ satisfies equations (6-1) to (6-2).
Similarly if we assume that p_{x} is p_{2}, we obtain n defined by equation (6-8).
Secondly let us assume $p_{J-1}<n<p_{J}$, then to satisfy equations (5-1) to (5-J-1) n is expressed as
$n=2 a^{\prime} p_{1} p_{2} p_{3} \ldots p_{J-2} p_{J-1}$,
where a ' is another natural number.
Thirdly let us assume $p_{J}<n<p_{J+1}$, then equation (5-J) is written as
$2 a^{\prime} p_{1} p_{2} p_{3} \ldots p_{J-2} p_{J-1}-p_{J}=b_{J} q_{J}$.
Then if we suppose q_{J} is p_{j} (here $j=1,2, \ldots$, or $J-1$), equation (6-12) leads to
$2 a^{\prime} p_{1} p_{2} p_{3} \ldots p_{J-2} p_{J-1}-p_{J}=b_{J} p_{j}$,
or $\quad p_{J}=p_{j}\left(-b_{j}+2 a^{\prime} p_{1} p_{2} \ldots p_{j-1} p_{j+1} \ldots p_{J-1}\right)$.

This case does not hold true because p_{J} will become a composite number. Thus if we suppose q_{J} is p_{J}, equation (5-J) leads to

$$
\begin{align*}
& 2 a^{\prime} p_{1} p_{2} p_{3} \ldots p_{J-2} p_{J-1}-p_{J}=b_{J} p_{J}, \tag{6-15}\\
& \text { or } 2 a^{\prime} p_{1} p_{2} p_{3} \ldots p_{J-2} p_{J-1}=p_{J}\left(b_{J}+1\right) . \tag{6-16}
\end{align*}
$$

To satisfy equation (6-16) we need following equations (a " is another natural number)
$a^{\prime}=a^{\prime \prime} p_{J}, \quad$ and
$2 p_{1} p_{2} p_{3} \ldots p_{J-2} p_{J-1}=b_{J}+1$.
By combining equations (6-17) and (6-11), n which satisfies the equations (5-1) to (5-J) can be expressed as (a is a natural number)
$n=2 a p_{1} p_{2} p_{3} \ldots p_{J-2} p_{J-1} p_{J}$.
However, the even number n which was defined by equation (6-19) is much greater than the above defined range ($p_{J}<n<p_{J+1}$). This means that there does not exist an even integer n which satisfies the equations (5-1) to (5-J) in the defined range.

In the above discussion if q_{J} which satisfies equation (6-12) does not exist, $b_{J} q_{J}$ will be some prime greater than p_{J}. This completes the Theorem 2.

And for $n=4$ or 6 the Theorem 2 holds true since $4=2+2$ or $6=3+3$. Thus using some primes p and q every positive even integer greater than 2 is written as

$$
\begin{equation*}
n-q=p \text { or } n=p+q . \tag{6-20}
\end{equation*}
$$

This completes the Theorem 2.

3. A LEMMA

Lemma 1: Every positive or negative odd integer is expressed as the addition and/or subtraction of three primes. Or every positive or negative odd integer m is expressed as
$p+q+r$ or $p-q+r$ and so on, where p, q, and r are primes.
Proof: Let m be a positive odd integer. Using some even integer n and a prime r, integer m is written as
$m=n+r$
Here by the theorems 2 and 1 the even integer n is expressed as
$n=p+q$, or
$n=p-q$,
where p and q are primes. Using equations (7-1) and (7-2), m is expressed as
$m=p+q+r$.
Similarly using equations (7-1) and (7-3), m is expressed as
$m=p-q+r$
Furthermore equation (7-5) can be written as
$-m=q-p-r$.
This means every negative odd integer is expressed as the addition and/or subtraction of three primes.

This completes the Lemma 1.

ACKNOWLEDGMENT

The author wishes to express his thanks to anonymous readers for giving valuable advice.

REFERENCES

1. Heath-Brown, D. R.; Puchta, J. C. (2002), "Integers represented as a sum of primes and powers of two", Asian Journal of Mathematics 6 (3): 535-565,
arXiv:math.NT/0201299
2. Hazewinkel, Michiel, ed. (2001), "Goldbach problem", Encyclopaedia of Mathematics, Springer, ISBN 978-1-55608-010-4
3. Helfgott, H.A. (2013). "Major arcs for Goldbach's theorem". arXiv:1305.2897 [math.NT]

AMS Classification Number: 11B39

