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ABSTRACT: A first theorem stating that every positive or negative even integer is the 

difference between two primes is proved. By applying the proof of the first theorem a 

simple proof of the second theorem (Goldbach’s conjecture) is presented. Using the 

first and second theorems a lemma stating that every positive or negative odd integer is 

expressed by the addition and/or subtraction of three primes is proved.      

 

1. A FIRST THEOREM 

 

Theorem 1:  Every positive or negative even integer is expressed as the difference 

between two primes. Or every even integer n is expressed as p - q, where p and q are 

primes. 

  Proof:  Let n be some positive even integer greater than or equal to 6 which cannot 

be expressed by the difference between two primes. And suppose that pi ‘s(i=1, 2, 3, 

… ) are all primes from 3 to the prime pJ+1, where p1=3, p2=5, and n is greater than pJ 

and smaller than pJ+1, namely 

  pJ < n < pJ+1.             (1) 

 Then n is expressed as 2apx, where a is a natural number, and px is a prime 

selected from p1 to pJ. Here n or 2apx is expressed as the difference between a prime 



A SIMPLE PROOF OF GOLDBACH’S CONJECTURE 

 2 

and a composite integer. In other words n or 2apx satisfies the following equations, 

where bi’s are some odd integers greater than or equal to 3 and qi’s are primes selected 

from p1 to pJ: 

2apx +p1 =b1q1            (2-1)  

2apx +p2 =b2q2            (2-2)  

2apx +p3 =b3q3            (2-3)  

……………………… 

2apx +pJ-1 =bJ-1qJ-1                 (2-J-1)  

2apx +pJ  =bJqJ .                   (2-J)  

 It should be noted that px is smaller than or equal to pJ and qi’s are smaller than 

or equal to pJ, since bi ≧ 3. We determine n or 2apx which satisfies equations (2-1) to 

(2-J) by using mathematical induction. Firstly let us assume J=2, then equations (2-1) 

to (2-J) will be  

2apx +p1 =b1q1            (3-1)  

2apx +p2 =b2q2            (3-2)  

 Then if we assume that px is p1and q1 is p1, equation (3-1) will be 

 2ap1 +p1 =b1p1 , namely          (3-3) 

 2a +1 =b1 or 2a = b1 – 1.             (3-4) 

  In this case if we further assume that q2 is p1 (case1: px is p1, q1 is p1 and q2 is 

p1), equation (3-2) will be 

 2ap1 +p2 =b2p1 , namely p2 = (b2 – 2a)p1.                (3-5)  

Since p2 will become a composite number by equation (3-5), case 1 does not hold true. 

Then if we assume that q2 is p2 (case2: px is p1, q1 is p1 and q2 is p2), equation (3-2) will 

be 
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 2ap1 +p2 =b2p2 , namely 2ap1= (b2 – 1)p2.              (3-6)  

 Equation (3-6) leads to  

a = a’p2 and 2p1 = (b2-1) or b2=2p1 +1.        (3-7)   

By substituting a = a’p2 (a’ is a natural number) in 2ap1, n is expressed as 

n=2a’p1p2 .               (3-8) 

Using n defined by equation (3-8) in equations (3-1) to (3-2) we obtain   

2a’p1p2 +p1 =b1p1 or b1=2a’p2+1        (3-9)  

2a’p1p2+p2 =b2p2 or b2=2a’p1+1 .             (3-10)  

This means that case 2 holds true and n or 2a’ p1p2 satisfies equations (3-1) to (3-2). 

Similarly if we assume that px is p2, we obtain n defined by equation (3-8). 

 Secondly let us assume pJ-1 < n < pJ , then to satisfy equations (2-1) to (2-J-1) 

n is expressed as 

n=2a’p1p2p3…pJ-2pJ-1 ,             (3-11) 

where a’ is another natural number. 

 Thirdly let us assume pJ < n < pJ+1, then equation (2-J) is written as 

2a’p1p2p3…pJ-2pJ-1  +  pJ  =  bJqJ .               (3-12)  

Then if we suppose qJ is pj (here j=1,2, …, or J-1), equation (3-12) leads to 

2a’p1p2p3…pJ-2pJ-1  +  pJ  =  bJpj , or                (3-13)  

 pJ = pj(bj  - 2a’p1p2…pj-1pj+1…pJ-1).               (3-14) 

 This case does not hold true because pJ will become a composite number. Thus if we 

suppose qJ is pJ, equation (2-J) leads to 

2a’p1p2p3…pJ-2pJ-1  +  pJ  =  bJpJ , or                (3-15)  

 2a’p1p2p3…pJ-2pJ-1 = pJ(bJ - 1) .                (3-16) 

To satisfy equation (3-16) we need following equations (a’’ is another natural number) 
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a’ = a’’pJ,  and         (3-17) 

2p1p2p3…pJ-2pJ-1 = bJ -1 .              (3-18) 

By combining equations (3-17) and (3-11) n which satisfies the equations (2-1) to (2-J) 

can be expressed as (a is a natural number)   

n=2ap1p2p3…pJ-2pJ-1 pJ.            (3-19) 

 However, the even number n which is defined by equation (3-19) is much 

greater than the above defined range (pJ < n < pJ+1). This means that there does not 

exist an even integer n which satisfies the equations (2-1) to (2-J) in the defined range. 

 In the above discussion if qJ which satisfies equation (3-12) does not exist, 

bJqJ will be some prime greater than pJ. This completes the Theorem 1.   

 And for n=2 or 4 the Theorem 1 holds true since 2=5-3 or 4=7-3. Thus using 

some primes p and q every positive even integer is written as 

 n + q = p or n = p - q.          (3-20) 

 Furthermore equation (3-20) can be written as 

 -n = q - p,           (3-21) 

which means that every negative even integer is expressed as the difference between 

two primes. This completes the Theorem 1. □ 

 

2. A SECOND THEOREM (GOLDBACH’S CONJECTURE) 

 

Theorem 2:  Every even integer greater than 2 is expressed as the sum of two primes. 

Or every even integer n greater than 2 is expressed as p + q, where p and q are primes. 

  Proof:  Let n be some positive even integer greater than or equal to 6 which cannot 

be expressed by the sum of two primes. And suppose that pi ‘s(i=1, 2, 3, … ) are all 
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primes from 3 to the prime pJ+1, where p1=3, p2=5, and n is greater than pJ and smaller 

than pJ+1, namely 

  pJ < n < pJ+1.            (4) 

 Then n is expressed as 2apx, where a is a natural number, and px is a prime 

selected from p1 to pJ. Here n or 2apx is expressed as the sum of a prime and a 

composite integer. In other words n or 2apx satisfies the following equations, where bi’s 

are some odd integers greater than or equal to 3 and qi’s are primes selected from p1 to 

pJ: 

2apx - p1 =b1q1            (5-1)  

2apx - p2 =b2q2            (5-2)  

2apx - p3 =b3q3            (5-3)  

……………………… 

2apx - pJ-1 =bJ-1qJ-1                 (5-J-1)  

2apx - pJ  =bJqJ .                   (5-J)  

 It should be noted that px is smaller than or equal to pJ and qi’s are smaller than 

or equal to pJ, since bi ≧ 3. We determine n or 2apx which satisfies equations (5-1) to 

(5-J) by using mathematical induction. Firstly let us assume J=2, then equations (5-1) 

to (5-J) will be  

2apx - p1 =b1q1            (6-1)  

2apx - p2 =b2q2            (6-2)  

 Then if we assume that px is p1and q1 is p1, equation (6-1) will be 

 2ap1 - p1 =b1p1 , namely          (6-3) 

 2a - 1 =b1 or 2a = b1 + 1.            (6-4) 

  In this case if we further assume that q2 is p1 (case1: px is p1, q1 is p1 and q2 is 
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p1), equation (6-2) will be 

 2ap1 - p2 =b2p1 , namely p2 = (2a - b2 )p1.                (6-5)  

Since p2 will become a composite number by equation (6-5), case 1 does not hold true. 

Then if we assume that q2 is p2 (case2: px is p1, q1 is p1 and q2 is p2), equation (6-2) will 

be 

 2ap1 - p2 =b2p2 , namely 2ap1= (b2 + 1)p2.              (6-6)  

 Equation (6-6) leads to  

a = a’p2 and 2p1 = (b2+1) or b2=2p1 - 1.         (6-7)   

By substituting a = a’p2 (a’ is a natural number) in 2ap1, n is expressed as 

n=2a’p1p2 .                (6-8) 

Using n defined by equation (6-8) in equations (6-1) to (6-2) we obtain   

2a’p1p2 - p1 =b1p1 or b1=2a’p2- 1         (6-9)  

2a’p1p2- p2 =b2p2 or b2=2a’p1- 1 .             (6-10)  

This means that case 2 holds true and n or 2a’ p1p2 satisfies equations (6-1) to (6-2). 

Similarly if we assume that px is p2, we obtain n defined by equation (6-8). 

 Secondly let us assume pJ-1 < n < pJ , then to satisfy equations (5-1) to (5-J-1) 

n is expressed as 

n=2a’p1p2p3…pJ-2pJ-1 ,              (6-11) 

where a’ is another natural number. 

 Thirdly let us assume pJ < n < pJ+1, then equation (5-J) is written as 

2a’p1p2p3…pJ-2pJ-1  -  pJ  =  bJqJ .                (6-12)  

Then if we suppose qJ is pj (here j=1,2, …, or J-1), equation (6-12) leads to 

2a’p1p2p3…pJ-2pJ-1  -  pJ  =  bJpj ,                (6-13)  

 or  pJ = pj(- bj  + 2a’p1p2…pj-1pj+1…pJ-1).         (6-14) 
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 This case does not hold true because pJ will become a composite number. Thus if we 

suppose qJ is pJ, equation (5-J) leads to 

2a’p1p2p3…pJ-2pJ-1  -  pJ  =  bJpJ ,               (6-15)  

 or 2a’p1p2p3…pJ-2pJ-1 = pJ(bJ+1) .               (6-16) 

To satisfy equation (6-16) we need following equations (a’’ is another natural number) 

a’ = a’’pJ,  and          (6-17) 

2p1p2p3…pJ-2pJ-1 = bJ +1 .               (6-18) 

By combining equations (6-17) and (6-11), n which satisfies the equations (5-1) to 

(5-J) can be expressed as (a is a natural number)   

n=2ap1p2p3…pJ-2pJ-1 pJ.            (6-19) 

 However, the even number n which was defined by equation (6-19) is much 

greater than the above defined range (pJ < n < pJ+1). This means that there does not 

exist an even integer n which satisfies the equations (5-1) to (5-J) in the defined range. 

 In the above discussion if qJ which satisfies equation (6-12) does not exist, 

bJqJ will be some prime greater than pJ. This completes the Theorem 2.   

 And for n= 4 or 6 the Theorem 2 holds true since 4=2+2 or 6=3+3. Thus using 

some primes p and q every positive even integer greater than 2 is written as 

 n - q = p or n = p + q.         (6-20) 

 This completes the Theorem 2. □ 

 

3. A LEMMA 

 

Lemma 1:  Every positive or negative odd integer is expressed as the addition and/or 

subtraction of three primes. Or every positive or negative odd integer m is expressed as 
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p+q+r or p-q+r and so on, where p, q, and r are primes.   

  Proof:  Let m be a positive odd integer. Using some even integer n and a prime r, 

integer m is written as  

m = n + r                 (7-1) 

Here by the theorems 2 and 1 the even integer n is expressed as 

n= p +q, or          (7-2) 

n= p - q ,         (7-3)  

where p and q are primes. Using equations (7-1) and (7-2), m is expressed as 

m= p + q+ r .         (7-4) 

Similarly using equations (7-1) and (7-3), m is expressed as 

m= p - q+ r         (7-5) 

Furthermore equation (7-5) can be written as 

-m=q- p- r .          (7-6) 

This means every negative odd integer is expressed as the addition and/or subtraction 

of three primes.  

This completes the Lemma 1. □ 
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