A GENERALIZED FIBONACCI-LIKE SEQUENCE

Satoshi OMORI

Nishibori 4-chome, Sakura-ku, Saitama-shi, Saitama-ken, 338-0832 Japan
e-mail: rsj15335@nifty.com

May 1, 2009

Abstract

A generalized Fibonacci-like sequence $\left\{S_{n}\right\}$ and its characteristic equation are presented. Fibonacci, Lucas, Pell, and Padovan sequences are included in the sequence $\left\{S_{n}\right\}$. It is shown that the equation has only one real solution x_{0} in the range greater than 1 and the ratio $S_{n} / S_{n-1}{ }^{m}$ (m : a natural number) converges on x_{0} under certain conditions.

1. DEFINITIONS AND A LEMMA

Let k be any integer greater than or equal to 2 , and a_{1} and a_{k} be natural numbers and other $a_{i}(i=2, . ., k-1)$ non-negative integers. Then, using natural numbers b_{i} $(i=1,2, . ., k)$, a generalized Fibonacci-like sequence $\left\{S_{n}\right\}$ is defined by $S_{i}(i=0,1, \ldots, k-2)$ any non-negative integers, S_{k-1} any natural number,
and

$$
\begin{equation*}
S_{n}=a_{1} S_{n-1}^{b_{1}}+a_{2} S_{n-2}^{b_{2}}+\ldots+a_{k} S_{n-k}^{b_{k}}, \quad \text { for } n \geq k . \tag{1}
\end{equation*}
$$

Here, we assume that as n increases the ratio $S_{n} /\left(S_{n-1}\right)^{m}$ converges on a real number x, where m is a natural number. To determine x, let us write

A GENERALIZED FIBONACCI-LIKE SEQUENCE

$$
\begin{equation*}
\frac{S_{n}}{\left(S_{n-1}\right)^{m}}=\frac{S_{n-1}}{\left(S_{n-2}\right)^{m}}=\frac{S_{n-2}}{\left(S_{n-3}\right)^{m}}=\ldots=\frac{S_{n-k+1}}{\left(S_{n-k}\right)^{m}}=x . \tag{2}
\end{equation*}
$$

Relations (2) can be rewritten as

$$
\begin{align*}
& S_{n-k+1}=x S_{n-k}^{m}, \tag{3-1}\\
& S_{n-k+2}=x \quad S_{n-k+1}^{m}=x^{m+1} S_{n-k}^{m^{2}}, \tag{3-2}\\
& S_{n-k+3}=x \quad S_{n-k+2}^{m}=x^{m^{2}+m+1} S_{n-k}^{m^{3}}, \tag{3-3}\\
& S_{n}=x \quad S_{n-1}^{m}=x^{m^{k-1}+m^{k-2}+\ldots+m+1} S_{n-k}^{m^{k}} . \tag{3-k}
\end{align*}
$$

By putting relations (3-1) to (3-k) in (1), we obtain

$$
\begin{equation*}
x^{m^{k-1}+m^{k-2}+\ldots+m+1} S_{n-k}^{m^{k}}=\sum_{i=1}^{k-1} a_{i} X^{\left(m^{k-i-1}+m^{k-i-2}+\ldots+m+1\right) b_{i}} S_{n-k}^{m^{k-i} b_{i}}+a_{k} S_{n-k}^{b_{k}} . \tag{4}
\end{equation*}
$$

To have the identity (4) hold for any S_{n-k}, we need the following relations

$$
\begin{equation*}
S_{n-k}^{m^{k}}=S_{n-k}^{m^{k-i} b_{i}}=S_{n-k}^{b_{k}} \quad(i=1,2, \ldots, k-1) \tag{5}
\end{equation*}
$$

From (5) we obtain $b_{1}=m, b_{2}=m^{2}, \ldots, b_{k}=m^{k}$:

$$
\begin{equation*}
b_{i}=m^{i} \quad(i=1,2, \ldots, k) . \tag{6}
\end{equation*}
$$

Putting (6) in (1) and (4) yields

$$
\begin{equation*}
S_{n}=a_{1} S_{n-1}^{m}+a_{2} S_{n-2}^{m^{2}}+\ldots+a_{k} S_{n-k}^{m^{k}}, \quad \text { for } n \geq k \tag{7}
\end{equation*}
$$

and a characteristic equation

A GENERALIZED FIBONACCI-LIKE SEQUENCE

$$
\begin{gather*}
x^{m^{k-1}+m^{k-2}+\ldots+m+1}=a_{1} X^{m^{k-1}+m^{k-2}+\ldots+m}+a_{2} X^{m^{k-1}+m^{k-2}+\ldots+m^{2}} \\
+\ldots+a_{k-1} x^{m^{k-1}}+a_{k} \tag{8}
\end{gather*}
$$

Suppose that $m=1$, then the characteristic equation (8) of (7) leads to

$$
\begin{equation*}
x^{k}=a_{1} x^{k-1}+a_{2} x^{k-2}+\ldots+a_{k-1} x+a_{k} . \tag{9}
\end{equation*}
$$

Suppose that $m=2$ and $k=3$, then the sequence (7) and the characteristic equation (8) are as follows:

$$
\begin{equation*}
S_{n}=a_{1} S_{n-1}^{2}+a_{2} S_{n-2}^{4}+a_{3} S_{n-3}{ }^{8}, \quad \text { for } n \geqq 3, \tag{10}
\end{equation*}
$$

and

$$
\begin{equation*}
x^{7}=a_{1} x^{6}+a_{2} x^{4}+a_{3} . \tag{11}
\end{equation*}
$$

Remark 1: It is easy to verify that equation (8) has only one real solution in the range $x>1$. Namely, since a_{1} and a_{k} are natural numbers and other $a_{i} s(i=2,3, \ldots, k-1)$ non-negative integers, by dividing both sides of (8) by

$$
x^{m^{k-1}+m^{k-2}+\ldots+m}
$$

we obtain

$$
\begin{equation*}
x=\mathrm{f}(\mathrm{x})=a_{1}+\frac{a_{2}}{X^{m}}+\frac{a_{3}}{X^{m^{2}+m}}+\ldots+\frac{a_{k}}{X^{m^{k-1}+m^{k-2}+\ldots+m}} . \tag{12}
\end{equation*}
$$

In the range $x>1$, as x increases from 1 whereas function $f(x)$ decreases from $\left(a_{1}+a_{2}+\ldots+a_{k}\right)(\geqq 2)$ to a1 monotonously, equation (12) has only one real solution x_{0} and so does equation (8).

Remark 2: It is obvious from equation (12) that

A GENERALIZED FIBONACCI-LIKE SEQUENCE

$$
\begin{equation*}
1 \leqq a_{1}<x_{0}<\left(a_{1}+a_{2}+\ldots+a_{k}\right) \tag{13}
\end{equation*}
$$

and

$$
\begin{equation*}
\text { if } x<x_{0} \text {, then } f(x)>x_{0} \text {, and if } x>x_{0} \text {, then } f(x)<x_{0} \text {, } \tag{14}
\end{equation*}
$$

where $f(x)$ is defined by (10) in the range $x>1$.
Further, it should be noted that x_{0} is also the solution of the following equation:

$$
\begin{equation*}
x=f(f(x)) . \tag{15}
\end{equation*}
$$

Definition 1: If equation (15) has no real solution other than x_{0} in the range $x>1$, then we assume that the function $f(x)$ defined by (12) is "simple."

Suppose that function $f(x)$ is NOT simple. Then, there exist real numbers e, g $\left(e \neq x_{0}, g \neq x_{0}, e \neq g, 1<e, 1<g\right)$ such that $e=f(g)$ and $g=f(e)$. In this case, since $e=f(g)=f(f(e))$ and $g=f(e)=f(f(g))$, equation (15) has at least two real solutions other than x_{0} in the range $x>0$.

For example, in the cases of Fibonacci numbers ($m=1, k=2, a_{1}=a_{2}=1, S_{0}=0$, $S_{1}=1$) [1], Lucas numbers ($m=1, k=2, a_{1}=a_{2}=1, S_{0}=2, S_{1}=1$) [3], and Pell numbers ($m=1, k=2, a_{1}=2, a_{2}=1, S_{0}=0, S_{1}=1$) [2], function $f(x)$ is expressed as $a_{1}+a_{2} / x$, which is simple.

Lemma 1: Let function $f(x)$ be simple. Then if $1<x<x_{0}$, then $x<f(f(x))$, and if $x>x_{0}$, then $x>f(f(x))$, where x_{0} is the only one solution of equation (10) in the range $x>1$.

Proof: Let us write

A GENERALIZED FIBONACCI-LIKE SEQUENCE

$$
\begin{equation*}
F(x)=x-f(f(x)) \tag{16}
\end{equation*}
$$

When x increases from 1 to infinity, as function $f(x)$ decreases from $\left(a_{1}+a_{2}+\ldots+a_{k}\right)$ to a_{1} monotonously, function $f(f(x))$ increases from $f\left(a_{1}+a_{2}+\ldots+a_{k}\right)$ (>1) to $f\left(a_{1}\right)$ monotonously. Thus, $F(x)<0$ at $x=1$, and $F(x)>0$ at infinity. Further, $F\left(x_{0}\right)=0$, for $f\left(f\left(x_{0}\right)\right)=f\left(x_{0}\right)=x_{0}$.

Then, since function $f(x)$ is simple, $F(x)$ never reaches 0 other than x_{0}, we see that if $1<x<x_{0}$, then $F(x)<0$, and if $x>x_{0}$, then $F(x)>0$, establishing the Lemma 1 .

2. A THEOREM AND THE PROOF

Theorem 1: In a generalized Fibonacci-like sequence $\left\{S_{n}\right\}$ defined by (7), suppose that function $f(x)$ defined by (12) is simple. Then, as n increases the ratio $S_{n} / S_{n-1}{ }^{m}$ converges on x_{0}, where x_{0} is the only one real solution of equation (12) or (8) in the range $x>1$.

Proof: Let us write

$$
\begin{equation*}
\frac{S_{n-i}}{\left(S_{n-i-1}\right)^{m}}=\frac{S_{n-i}}{S_{n-i-1}^{m}}=y_{n-i}, \quad \text { for } \quad i=0,1, \ldots, k-1 \tag{21}
\end{equation*}
$$

Relations (21) can be rewritten as

$$
\begin{align*}
& S_{n-(k-1)}=y_{n-(k-1)} S_{n-k}^{m}, \tag{22-1}\\
& S_{n-(k-2)}=y_{n-(k-2)} S_{n-(k-1)}^{m}=y_{n-(k-2)} y_{n-(k-1)}^{m} S_{n-k}^{m^{2}}, \tag{22-2}\\
& S_{n-(k-3)}=y_{n-(k-3)} S_{n-(k-2)}^{m}=y_{n-(k-3)} y_{n-(k-2)}^{m} y_{n-(k-1)}^{m^{2}} S_{n-k}^{m^{3}}, \tag{22-3}\\
& S_{n}=y_{n} S_{n-1}^{m}=y_{n} y_{n-1}^{m} \ldots y_{n-(k-2)}^{m^{k-2}} y_{n-(k-1)}^{m^{k-1}} S_{n-k}^{m^{k}} . \tag{22-k}
\end{align*}
$$

A GENERALIZED FIBONACCI-LIKE SEQUENCE

By putting relations (22-1) to (22-k) in (7), we obtain

$$
\begin{equation*}
y_{n} y_{n-1}^{m} \ldots y_{n-(k-1)}^{m^{k-1}} S_{n-k}^{m^{k}}=\sum_{i=1}^{k-1} a_{i} y_{n-i}^{m^{i}} y_{n-(i+1)}^{m^{i+1}} \ldots y_{n-(k-1)}^{m^{k-1}} S_{n-k}^{m^{k}}+a_{k} S_{n-k}^{m^{k}} . \tag{23}
\end{equation*}
$$

Dividing both sides of (23) by

$$
y_{n-1}^{m} y_{n-2}^{m^{2}} \ldots y_{n-(k-1)}^{m^{k-1}} S_{n-k}^{m^{k}}
$$

leads to

$$
\begin{equation*}
y_{n}=a_{1}+\frac{a_{2}}{y_{n-1}^{m}}+\frac{a_{3}}{y_{n-1}^{m} \quad y_{n-2}^{m^{2}}}+\cdots+\frac{a_{k}}{y_{n-1}^{m} y_{n-2}^{m^{2}} \ldots y_{n-(k-1)}^{m^{k-1}}}, \tag{24}
\end{equation*}
$$

which is equivalent to definition (7) of the sequence $\left\{S_{n}\right\}$. It should be noted that by replacing each $y_{i}(i=n-1, n-2, \ldots, n-(k-1))$ by x on the right side of (24) we obtain the same function as the function $f(x)$ defined by (12).

First, since a_{1} and S_{k-1} are natural numbers in (7), if $n \geqq k-1$, then $S_{n} \geqq 1$. Observe that a_{k} is also a natural number. Hence, if $n \geqq 2 k-1$, then

$$
\begin{equation*}
\frac{S_{n}}{S_{n-1}^{m}}=y_{n}>a_{1} \geq 1 \tag{25}
\end{equation*}
$$

Second, considering (25) and (24), we see that if $n \geqq 3 k-1$, then

$$
\begin{equation*}
1<y_{n}<\left(a_{1}+a_{2}+\ldots+a_{k}\right) . \tag{26}
\end{equation*}
$$

Comparing (11) and (26), we can choose two real numbers c_{1} and d_{1} such that

$$
\begin{equation*}
1<c_{1}<x_{0}<d_{1}<\left(a_{1}+a_{2}+\ldots+a_{k}\right) \text {, and } c_{1}<y_{n}<d_{1} . \tag{27}
\end{equation*}
$$

The second inequality of (27) leads to

$$
\begin{equation*}
\frac{1}{d_{1}}<\frac{1}{y_{n}}<\frac{1}{c_{1}} . \tag{28}
\end{equation*}
$$

By putting inequality (28) in (24) and using function $f(x)$ defined by (12), we see that if

A GENERALIZED FIBONACCI-LIKE SEQUENCE

$n \geqq 4 k-1$, then

$$
\begin{equation*}
1<f\left(d_{1}\right)<y_{n}<f\left(c_{1}\right) . \tag{29}
\end{equation*}
$$

Considering the first inequality1 of (27) and relation (14), we see that

$$
\begin{equation*}
f\left(d_{1}\right)<x_{0}<f\left(c_{1}\right) . \tag{30}
\end{equation*}
$$

Then, inequality of (29) leads to

$$
\begin{equation*}
\frac{1}{f\left(c_{1}\right)}<\frac{1}{y_{n}}<\frac{1}{f\left(d_{1}\right)} . \tag{31}
\end{equation*}
$$

By putting inequality (31) in (24) and using function $f(x)$ defined by (12), we see that if $n \geqq 5 k-1$, then

$$
\begin{equation*}
1<f\left(f\left(c_{1}\right)\right)<y_{n}<f\left(f\left(d_{1}\right)\right) \tag{32}
\end{equation*}
$$

Observe that function $f(x)$ is simple. Hence, it follows from Lemma 1 and (27), (30), (32) that

$$
\begin{equation*}
c_{1}<f\left(f\left(c_{1}\right)\right)<y_{n}<f\left(d_{1}\right)<d_{1}, \text { and } f\left(f\left(c_{1}\right)\right)<x_{0}<f\left(f\left(d_{1}\right)\right) . \tag{33}
\end{equation*}
$$

Let us write

$$
\begin{equation*}
f\left(f\left(c_{1}\right)\right)=c_{2}, \text { and } f\left(f\left(d_{1}\right)\right)=d_{2}, \tag{34}
\end{equation*}
$$

then inequalities (34) can be rewritten as

$$
\begin{equation*}
1<c_{1}<c_{2}<y_{n}<d_{2}<d_{1}, \text { and } c_{2}<x_{0}<d_{2} . \tag{35}
\end{equation*}
$$

Further, if we start the above procedure for $n \geqq 4 k-1$ with inequalities (27), then inequalities (35) holds for $n \geqq 6 k-1$.

Hence, as n increases, there exist sequences $\left\{c_{i}\right\}$ and $\left\{d_{i}\right\}$ such that

$$
\begin{equation*}
1<c_{1}<c_{2}<\ldots<c_{i}<y_{n}<d_{i}<\ldots<d_{2}<d_{1} \text {, and } c_{i}<x_{0}<d_{i}, \tag{36}
\end{equation*}
$$

where $c_{i}=f\left(f\left(c_{i-1}\right)\right)$ and $d_{i}=f\left(f\left(d_{i-1}\right)\right)$. This completes the Theorem 1.

A GENERALIZED FIBONACCI-LIKE SEQUENCE

3. A MORE GENERALIZED CASE ($\left.a_{1}=0\right)$ (this part needs to be revised)

Suppose that $a_{1}=0$ and $a_{\mathrm{p}} \geqq 1(1<p<k, k \geqq 3)$ in a generalized sequence $\left\{S_{n}\right\}$ defined by (7) to include Padovan sequence ($m=1, k=3, a_{1}=0, a_{2}=a_{3}=1, S_{0}=S_{1}=S_{2}=1$) [4]. In this case it is easy to verify that function $f(x)$ defined by (12) ($a_{1}=0, a_{p} \geqq 1, a_{k}$ $\geqq 1$) is simple in the sense of Definition 1 .

Hence, considering the above proof, if there exists a number n_{0} such that ratio $S_{n} / S_{n-1}{ }^{m}>1$ for $n>n_{0}$, then the ratio $S_{n} / S_{n-1}{ }^{m}$ converges on x_{0} as n increases, where x_{0} is the only one real solution of equation (12) or (8) in the range $x>1$.

ACKNOWLEDGMENT

The author wishes to express his thanks to anonymous readers for giving valuable advice.

REFERENCES

1. G. E. Andrews. "Some Formulae for the Fibonacci Sequence with Generalizations." The Fibonacci Quarterly 7.2 (1969): 113-30.
2. W. L. McDaniel. "Triangular Numbers in the Pell Sequence." " The Fibonacci Quarterly 34 (1996): 105-07.
3. N. Robbins. "A New Formula for Lucas Numbers." The Fibonacci Quarterly 29.4 (1991): 362-63.
4. I. Stewart. "Tales of a Neglected Number." Scientific American 274 (1996): 102-03.

A GENERALIZED FIBONACCI-LIKE SEQUENCE

AMS Classification Number: 11B39

