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ABSTRACT: A generalized Fibonacci-like sequence {Sn} and its characteristic 

equation are presented. Fibonacci, Lucas, Pell, and Padovan sequences are included in 

the sequence {Sn}. It is shown that the equation has only one real solution x0 in the 

range greater than 1 and the ratio Sn/Sn-1
m
 (m: a natural number) converges on x0 under 

certain conditions.  

 

1. DEFINITIONS AND A LEMMA 

 

Let k be any integer greater than or equal to 2, and a1 and ak be natural 

numbers and other ai (i=2,..,k-1) non-negative integers. Then, using natural numbers bi 

(i=1,2,..,k), a generalized Fibonacci-like sequence {Sn} is defined by 

        Si(i=0,1,...,k-2) any non-negative integers, Sk-1 any natural number, 

 and 

 

Here, we assume that as n increases the ratio Sn/(Sn-1)
m
 converges on a real 

number x, where m is a natural number. To determine x, let us write 
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Relations (2) can be rewritten as  

 

By putting relations (3-1) to (3-k) in (1), we obtain 

 

To have the identity (4) hold for any Sn-k, we need the following relations 

 

From (5) we obtain b1=m, b2=m
2
,..., bk=m

k
: 

                bi=m
i
   (i=1,2,...,k).                             (6) 

Putting (6) in (1) and (4) yields 

 

and a characteristic equation 
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Suppose that m=1, then the characteristic equation (8) of (7) leads to 

   x
k
 = a1x

k-1
 + a2x

k-2
 + ... + ak-1x + ak .               (9) 

Suppose that m=2 and k=3, then the sequence (7) and the characteristic 

equation (8) are as follows: 

  Sn = a1Sn-1
2
 + a2Sn-2

4
 + a3Sn-3

8  
,  for n ≧ 3,               (10) 

and 

    x
7
 = a1x

6
 + a2x

4
  + a3  .                               (11) 

 

Remark 1: It is easy to verify that equation (8) has only one real solution in the range 

x>1. Namely, since a1 and ak are natural numbers and other ai’s(i=2,3,...,k-1) 

non-negative integers, by dividing both sides of (8) by  

 

we obtain  

 

In the range x>1, as x increases from 1 whereas function f(x) decreases from 

(a1+a2+...+ak) (≧ 2) to a1 monotonously, equation (12) has only one real solution x0 

and so does equation (8). 

 

Remark 2: It is obvious from equation (12) that 
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               1 ≦ a1 < x0 < (a1+a2+...+ak)   ,                  (13) 

and 

 if x < x0, then f(x) > x0, and if x > x0, then f(x) < x0,        (14) 

where f(x) is defined by (10) in the range x>1. 

Further, it should be noted that x0 is also the solution of the following 

equation: 

                      x = f(f(x)) .                             (15) 

 

Definition 1: If equation (15) has no real solution other than x0 in the range x>1, then 

we assume that the function f(x) defined by (12) is “simple.”  

Suppose that function f(x) is NOT simple. Then, there exist real numbers e, g 

(e≠x0, g≠x0, e≠g, 1<e, 1<g) such that e=f(g) and g=f(e). In this case, since 

e=f(g)=f(f(e)) and g=f(e)=f(f(g)), equation (15) has at least two real solutions other than 

x0 in the range x>0. 

For example, in the cases of Fibonacci numbers (m=1, k=2, a1=a2=1, S0=0, 

S1=1) ［1］, Lucas numbers (m=1, k=2, a1=a2=1, S0=2, S1=1) ［3］, and Pell numbers 

(m=1, k=2, a1=2, a2=1, S0=0, S1=1) ［2］, function f(x) is expressed as a1+a2/x, which is 

simple. 

 

Lemma 1:  Let function f(x) be simple. Then if 1 < x < x0, then x < f(f(x)), and if x > x0, 

then x > f(f(x)), where x0 is the only one solution of equation (10) in the range x>1. 

 

   Proof:  Let us write 
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                 F(x) = x - f(f(x)).                                (16) 

When x increases from 1 to infinity, as function f(x) decreases from (a1+a2+...+ak) to a1 

monotonously, function f(f(x)) increases from f(a1+a2+...+ak) (>1) to f(a1) 

monotonously. Thus, F(x)<0 at x=1, and F(x)>0 at infinity. Further, F(x0)=0, for 

f(f(x0))=f(x0)=x0. 

Then, since function f(x) is simple, F(x) never reaches 0 other than x0, we see 

that if 1< x< x0, then F(x)<0, and if x>x0, then F(x)>0, establishing the Lemma 1. 

 

2. A THEOREM AND THE PROOF 

Theorem 1:  In a generalized Fibonacci-like sequence {Sn} defined by (7), suppose 

that function f(x) defined by (12) is simple. Then, as n increases the ratio Sn/Sn-1
m
 

converges on x0, where x0 is the only one real solution of equation (12) or (8) in the 

range x>1. 

 

  Proof:  Let us write 

 

Relations (21) can be rewritten as 
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By putting relations (22-1) to (22-k) in (7), we obtain 

 

Dividing both sides of (23) by  

 

leads to 

 

which is equivalent to definition (7) of the sequence {Sn}. It should be noted that by 

replacing each yi (i=n-1,n-2,…,n-(k-1)) by x on the right side of (24) we obtain the 

same function as the function f(x) defined by (12). 

First, since a1 and Sk-1 are natural numbers in (7), if n ≧ k-1, then Sn ≧ 1. 

Observe that ak is also a natural number. Hence, if n ≧ 2k-1, then 

 

Second, considering (25) and (24), we see that if n ≧ 3k-1, then 

                1< yn < (a1+a2+...+ak) .                             (26) 

Comparing (11) and (26), we can choose two real numbers c1 and d1 such that 

 1 < c1 < x0 < d1 < (a1+a2+...+ak), and c1 < yn < d1.             (27) 

The second inequality of (27) leads to 

 

By putting inequality (28) in (24) and using function f(x) defined by (12), we see that if 
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n ≧ 4k-1, then  

 1 < f(d1) < yn < f(c1).                                 (29) 

Considering the first inequality1 of (27) and relation (14), we see that  

                   f(d1) < x0 < f(c1).                                (30) 

Then, inequality of (29) leads to 

 

By putting inequality (31) in (24) and using function f(x) defined by (12), we 

see that if n ≧ 5k-1, then  

                1 < f(f(c1)) < yn < f(f(d1)) .                           (32) 

Observe that function f(x) is simple. Hence, it follows from Lemma 1 and (27), (30), 

(32) that 

 c1 < f(f(c1)) < yn < f(d1) < d1 , and f(f(c1)) < x0 < f(f(d1)).         (33) 

Let us write 

        f(f(c1))= c2, and f(f(d1))= d2  ,                      (34) 

then inequalities (34) can be rewritten as 

       1< c1 < c2 < yn < d2 < d1, and c2 < x0 < d2  .                      (35) 

Further, if we start the above procedure for n ≧ 4k-1 with inequalities (27), 

then inequalities (35) holds for n ≧ 6k-1. 

Hence, as n increases, there exist sequences {ci} and {di} such that  

      1< c1 < c2 < ... < ci < yn < di < ...< d2 < d1, and ci < x0 < di  ,        (36) 

where ci=f(f(ci-1)) and di=f(f(di-1)). This completes the Theorem 1. □ 
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3. A MORE GENERALIZED CASE (a1=0)(this part needs to be revised) 

Suppose that a1=0 and ap≧1 (1<p<k, k≧3) in a generalized sequence {Sn} 

defined by (7) to include Padovan sequence (m=1, k=3, a1=0, a2=a3=1, S0=S1=S2=1) 

［4］. In this case it is easy to verify that function f(x) defined by (12) (a1=0, ap≧1, ak 

≧1) is simple in the sense of Definition 1. 

Hence, considering the above proof, if there exists a number n0 such that ratio 

Sn/Sn-1
m
 > 1 for n>n0, then the ratio Sn/Sn-1

m
 converges on x0 as n increases, where x0 is 

the only one real solution of equation (12) or (8) in the range x>1. 
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