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ABSTRACT: A generalized Fibonacci-like sequence {S,} and its characteristic
equation are presented. Fibonacci, Lucas, Pell, and Padovan sequences are included in
the sequence {S,}. It is shown that the equation has only one real solution X, in the
range greater than 1 and the ratio S,/Sp1+™ (m: a natural number) converges on X, under

certain conditions.

1. DEFINITIONS AND ALEMMA

Let k be any integer greater than or equal to 2, and a; and ax be natural
numbers and other a; (i=2,..,k-1) non-negative integers. Then, using natural numbers b;
(i=1,2,..,k), a generalized Fibonacci-like sequence {Sn} is defined by

Si(i=0,1,...,k-2) any non-negative integers, Sk.; any natural number,

and
S, :alS,f_'1+ag S,ﬁé + ... +3kS,f_’}, forn>k. (D

Here, we assume that as n increases the ratio S,/(Sn1)™ converges on a real

number x, where m is a natural number. To determine x, let us write
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Sn _ S.n—l _ Sn—? — — AS,ﬂ’¢:_’f. (2)

5, (8. (S (8.

Relations (2) can be rewritten as

Sk = X Sog, (3-1)
Spin=X Sln=x""8" (3-2)
S, pa=x S =x" g (3-3)
S, =x "= x™ e i gt (3-k)

By putting relations (3-1) to (3-k) in (1), we obtain

m w2 ama1  mk k] (m*Flamb24 e m+1)b; o m*ib; b
S ta,S,t (4)

X n—k:zaiX n-k -

To have the identity (4) hold for any S, we need the following relations

mk*".b,—_

Sr=8m =8l (i=1,2, ,k-1) (5)

From (5) we obtain b;=m, b,=m?,..., b=m":
bi=m'  (i=1,2,...,k). (6)

Putting (6) in (1) and (4) yields

2 k
S,=a,8" +a, S+ +a,S, ., forn>k (7)

and a characteristic equation
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k-1
+...+31H)(m +a,. (8)

Suppose that m=1, then the characteristic equation (8) of (7) leads to
X = apX ™t + axXf? + L+ aeaX + a. (9)
Suppose that m=2 and k=3, then the sequence (7) and the characteristic

equation (8) are as follows:

v
w

Sp = a1Sna’ + @Sna” + asSns® ,  forn (10)
and

X =apl+axt +as . (11)

Remark 1: It is easy to verify that equation (8) has only one real solution in the range
x>1. Namely, since a; and ax are natural numbers and other a;’s(i=2,3,...,k-1)

non-negative integers, by dividing both sides of (8) by

mfl +mk2+  +m

X ’
we obtain
_ _ 32 33 ak
X—f(x)_al+ xm + Xm2+m mef"+m”"2+...+m (12)

In the range x>1, as x increases from 1 whereas function f(x) decreases from

(ar+az+...+ay) (Z 2) to al monotonously, equation (12) has only one real solution xo

and so does equation (8).

Remark 2: It is obvious from equation (12) that
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1 £ a; <X <(artax+..+a) (13)
and
if X < Xo, then f(x) > xo, and if X > xg, then f(x) < Xo, (14)
where f(x) is defined by (10) in the range x>1.
Further, it should be noted that X, is also the solution of the following
equation:

x = f(f(x)) . (15)

Definition 1: If equation (15) has no real solution other than xo in the range x>1, then
we assume that the function f(x) defined by (12) is “simple.”

Suppose that function f(x) is NOT simple. Then, there exist real numbers ¢, ¢
(e#xo, g#Xo, €#Q, 1l<e, 1<g) such that e=f(g) and g=f(e). In this case, since
e=f(g)=f(f(e)) and g=f(e)=f(f(g)), equation (15) has at least two real solutions other than
Xo in the range x>0.

For example, in the cases of Fibonacci numbers (m=1, k=2, a;=a,=1, Sp=0,
S1=1) [11, Lucas numbers (m=1, k=2, a;=a,=1, So=2, S;=1) [31] , and Pell numbers
(m=1, k=2, a;=2, a,=1, So=0, S;=1) [2], function f(X) is expressed as a;+a/X, which is

simple.

Lemma 1: Let function f(x) be simple. Then if 1 < x < Xo, then x < f(f(x)), and if x > xo,

then x > f(f(x)), where X is the only one solution of equation (10) in the range x>1.

Proof: Let us write
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F(x) = x - f(f(x)). (16)
When x increases from 1 to infinity, as function f(x) decreases from (a;+a,+...+ay) to a;
monotonously, function f(f(x)) increases from f(ajta,+...+a) (>1) to f(ay)
monotonously. Thus, F(x)<0 at x=1, and F(x)>0 at infinity. Further, F(x0)=0, for
f(f(xo0))=f(X0)=Xo.
Then, since function f(x) is simple, F(x) never reaches 0 other than xo, we see

that if 1< X< xo, then F(x)<0, and if x>xo, then F(x)>0, establishing the Lemma 1.

2. ATHEOREM AND THE PROOF
Theorem 1: In a generalized Fibonacci-like sequence {S,} defined by (7), suppose
that function f(x) defined by (12) is simple. Then, as n increases the ratio Sp/Sp1™
converges on Xo, where Xo is the only one real solution of equation (12) or (8) in the

range x>1.

Proof: Let us write

S, S .
i ni _I;?I., for 1= 0,1,...k-1, (21)
(S ) Sn-j—l

n-i-1

Relations (21) can be rewritten as

Sk = Tother) S > (22-1)
S 2= T2 n-en) = FVthe) Fotie-1) Soi> (22-2)
Sn—(k—3): n-(k-3) Sn—(k—2) = -9 P n-e-2) (-1 S, i (22-3)

m m m*? m*! m*
Sn :-Z: Snfl :); -y;; 1 '"’};-(k—i%) ‘Kw—(k-l) Sn—k . (22‘k)
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By putting relations (22-1) to (22-k) in (7), we obtain

k-1 ] i - k k
. mA m* m’ @it m*! m m
yn ‘K}—l e J/;_(k_l) Sn—k _Elai X;-j -y;i—(j+1) cee 'y;:l—(k_l) Sﬂ-k + ‘ak Sn-ff . (23)

Dividing both sides of (23) by

m __ m? m*1 mk
K’“ 'K?*z T ‘KJ—(A'fl) n-k
leads to
32 a. a
}/;1 = 31 + m + m . m? + o + m m? £ HI‘;H (24)
./Vﬂ—l .y;r-l yn—2 -y}kl _Kq,g ‘%7(&'1) 3

which is equivalent to definition (7) of the sequence {S,}. It should be noted that by
replacing each y; (i=n-1,n-2,...,n-(k-1)) by x on the right side of (24) we obtain the
same function as the function f(x) defined by (12).

First, since a; and Si.; are natural numbers in (7), if n = k-1, then S, = 1.

Observe that ay is also a natural number. Hence, if n = 2k-1, then

S,
5" =y, >a1>1. (25)

n-1

Second, considering (25) and (24), we see that if n = 3k-1, then
1<y, < (artag+...+ay) . (26)
Comparing (11) and (26), we can choose two real numbers ¢, and d; such that
1<y <Xp<d;<(artart+..+ay), and ¢; <y, <d;. (27)

The second inequality of (27) leads to

< < . 28
d, Va Cy (28)

By putting inequality (28) in (24) and using function f(x) defined by (12), we see that if
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n = 4k-1, then
1 < f(dh) < yn < f(Co). (29)
Considering the first inequalityl of (27) and relation (14), we see that
f(dy) < Xo < f(ca). (30)

Then, inequality of (29) leads to

1 _1 _ 1
f.(cl) yn f(dl)

(31)

By putting inequality (31) in (24) and using function f(x) defined by (12), we
see that if n = 5k-1, then
1 < f(f(cy)) < yn < f(f(dy)) . (32)
Observe that function f(x) is simple. Hence, it follows from Lemma 1 and (27), (30),
(32) that
c1 < f(f(ca)) < yn <f(d1) < di, and f(f(c1)) < xo < f(f(d1)). (33)
Let us write
f(f(c1))= ¢y, and f(f(d1))=d, , (34)
then inequalities (34) can be rewritten as
1<c1<Cp<yp<dy<dj,and c, <xo<d; . (35)
Further, if we start the above procedure for n = 4k-1 with inequalities (27),

then inequalities (35) holds forn = 6k-1.

Hence, as n increases, there exist sequences {c;} and {d;} such that
1<C1<C<...<Ci<Yyp<di<..<dy<dgandci<Xx<di , (36)

where ¢i=f(f(ci.1)) and di=f(f(di.1)). This completes the Theorem 1. O
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3. AMORE GENERALIZED CASE (a;=0)(this part needs to be revised)
Suppose that a;=0 and a,=1 (1<p<k, k=3) in a generalized sequence {S}
defined by (7) to include Padovan sequence (m=1, k=3, a;=0, a;=as=1, Sp=S1=S,=1)
[4] . Inthis case it is easy to verify that function f(x) defined by (12) (a1=0, ap=1, a
=1) is simple in the sense of Definition 1.
Hence, considering the above proof, if there exists a number no such that ratio

Sn/Sna™ > 1 for n>ng, then the ratio S,/S,..™ converges on X, as n increases, where Xo is

the only one real solution of equation (12) or (8) in the range x>1.
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