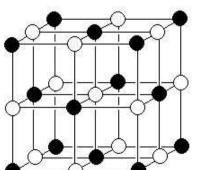
C 結晶構造


結晶構造とは・・・(物質内の原子やイオンの配列)

結晶格子とは・・・(配列の基本単位となる1ブロック)ブロック塀の中の1ブロック

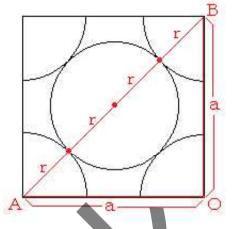
金属の結晶構造

名 称	体心立方格子	面心立方格子	六方最密充填
構造	1個	1/8/16	
(下図は 原子の 中心点 を表す)			
格子内原子数	角に 1/8×8 = 1個 中心 1個 合計 2個	角に 1/8×8 = 1個 面に 1/2×6 = 3個 合計 4個	角に1/6×12=2個 中心に3個 面に1/2×2=1個 合計 6個
隣接する 原子数	8 個	1 2 個	1 2 個
金属例	Na、K、Ba、Fe	Al、Cu、Ag	M g、Z n

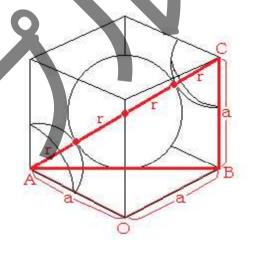
その他の物質 (例 塩化ナトリウム NaCl) (はNa、 はClを表す)

[NaClの結晶構造](単純立方格子)

	Na の数	Cl の数		
角に面に	1/8 × 8 = 1個 1/2 × 6 = 3個	辺に 1/4×12=3個 中心に 1個		
合計	4個	合計 4個		


Naの数 : Clの数 = 4:4 = 1:1

格子内の原子の比は、その物質の成分元素の比と同じ


原子半径の求め方

(隣接する原子に着目すること!)

(1) 面心立方格子の場合

(2) 体心立方格子の場合

原子の半径をr、格子の1辺の長さをaとする。 格子のひとつの面に隣接する原子に着目する。

OABで三平方の定理を用いて

OABで三平方の定理をF

$$(4r)^2 = a^2 + a^2$$

 $16r^2 = 2a^2$
 $8r^2 = a^2$
 $r^2 = a^2/8$

$$r = a/2 2 r = 2a/4$$

格子の中心に隣接する原子に着目する。 格子の底面の OABに三平方の定理を用いて

$$(AB)^2 = a^2 + a^2$$

= $2a^2$...

格子内の ABCに三平方の定理を用いて

$$(4r)^2 = (AB)^2 + a^2$$

(AB)² に を代入して

$$16 r^{2} = 2 a^{2} + a^{2}$$

= $3 a^{2}$
 $r = 3 a / 4$

充填率の求め方 充填率・・・格子内の原子の体積の割合 ^^^^^

> 格子内 充填率(%) =

《 《 充填率(%)	格子内の原子の体積			1	0 0	\$
*		各子の体積	*	•		\
""						
面心立方格子の場合		1/2	体心立方格子の場合			

面心立方格子の場合	体心立方格子の場合			
原子1個の体積は4 r³/3	原子1個の体積は4 r³/3			
面心立方格子は格子内に原子が4個	体心立方格子は格子内に原子が2個			
上の(1)式で r = 2a/4 a=4r/2	上の(2)式で r = 3 a / 4 a = 4 r / 3			
結晶格子の体積は a³ だから	結晶格子の体積は a³ だから			
充填率 = (4 r³/3 x 4) / a³	充填率 = (4 r ³ /3 x 2) / a ³			
これに 式を代入すれば、	これに 式を代入すれば、			
充填率は、74%	充填率は、68%			