A generalization of Fibonacci-like sequences

April 1, 2009

Satoshi OMORI ${ }^{1} 2$

Abstract

A generalized Fibonacci-like sequence $\left\{S_{n}\right\}$ (for $n \geq k$) is defined by $a_{1} S_{n-1}+a_{2} S_{n-2}+\cdots+a_{k} S_{n-k}$. By substituting x for $\frac{S_{n-i}}{S_{n-1-i}}(i=$ $0,1, \ldots, k-1$) in the sequence, an equation for determining x is derived in the form of $x=h(x)$. The equation has only one real positive solution x_{0}. It is proved that the ratio $\frac{S_{n}}{S_{n-1}}$ converges to x_{0} regardless of the values of S_{k-1}, \ldots, S_{0} under the condition that the function $h(x)$ has certain properties. It is shown that Fibonacci, Lucas, and Pell sequences satisfy the condition.

MSC-class: 11B39 (Primary); 40A05, 97A20 (Secondary)

1 Definitions and Lemmas

Let k be any integer ≥ 2, and a_{1} and a_{k} be natural numbers. And suppose that other $a_{i}(i=2, \ldots, k-1)$ are non-negative integers.

Then, a generalized Fibonacci-like sequence $\left\{S_{n}\right\}$ is defined by

$$
\begin{equation*}
S_{n}=a_{1} S_{n-1}+a_{2} S_{n-2}+\cdots+a_{k} S_{n-k}, \quad \text { for } n \geq k, \tag{1.1}
\end{equation*}
$$

where $S_{i}(i=0,1, \ldots, k-2)$ are any non-negative integers, and S_{k-1} is any natural number. The sequence $\left\{S_{n}\right\}$ includes Fibonacci numbers [1], Lucas numbers [3], and Pell numbers [2].

Here, we assume that as n increases the ratio $\frac{S_{n}}{S_{n-1}}$ converges to a real number x. To determine x, let us write

$$
\begin{equation*}
\frac{S_{n}}{S_{n-1}}=\frac{S_{n-1}}{S_{n-2}}=\frac{S_{n-2}}{S_{n-3}}=\cdots=\frac{S_{n-(k-1)}}{S_{n-k}}=x \tag{1.2}
\end{equation*}
$$

Relations (1.2) can be rewritten as

$$
\begin{equation*}
S_{n-(k-1)}=x S_{n-k}, \tag{1.3}
\end{equation*}
$$

[^0]\[

$$
\begin{align*}
& S_{n-(k-2)}=x S_{n-(k-1)}=x^{2} S_{n-k} \tag{1.3-1}\\
& S_{n-(k-3)}=x S_{n-(k-2)}=x^{3} S_{n-k} \tag{1.3-2}
\end{align*}
$$
\]

and finally

$$
\begin{equation*}
S_{n}=x S_{n-1}=x^{k} S_{n-k} \tag{k-1}
\end{equation*}
$$

By putting relations (1.3) to (1.3-(k-1)) in (1.1), we obtain

$$
\begin{equation*}
x^{k} S_{n-k}=\sum_{i=1}^{k-1} a_{i} x^{k-i} S_{n-k}+a_{k} S_{n-k} \tag{1.4}
\end{equation*}
$$

Dividing both sides of (1.4) by S_{n-k} yields an equation

$$
\begin{equation*}
x^{k}=a_{1} x^{k-1}+a_{2} x^{k-2}+\cdots+a_{k-1} x+a_{k} . \tag{1.5}
\end{equation*}
$$

Lemma 1.1. Equation (1.5) has only one real solution in the range $x>0$.
Proof. We divide the both sides of (1.5) by x^{k-1}. Hence we obtain

$$
\begin{equation*}
x=a_{1}+\frac{a_{2}}{x}+\frac{a_{3}}{x^{2}}+\cdots+\frac{a_{k}}{x^{k-1}}, \tag{1.6}
\end{equation*}
$$

where a_{1} and a_{k} are natural numbers and other $a_{i}(i=2,3, \ldots, k-1)$ are nonnegative integers. In the range $x>0$, since the right side of (1.6) decreases strictly from infinity to a_{1} as x increases from 0 , equation (1.6) has only one real positive solution and so does equation (1.5).

Definition 1.2. We define the right-side function of (1.6) as a function $h(x)$, namely

$$
\begin{equation*}
h(x)=a_{1}+\frac{a_{2}}{x}+\frac{a_{3}}{x^{2}}+\cdots+\frac{a_{k}}{x^{k-1}} . \tag{1.7}
\end{equation*}
$$

Using the function $h(x)$, equation (1.6) can be rewritten as

$$
\begin{equation*}
x=h(x) . \tag{1.8}
\end{equation*}
$$

Definition 1.3. We define the only one real positive solution to equation (1.5) or (1.8) as x_{0}, namely

$$
\begin{equation*}
x_{0}=h\left(x_{0}\right) . \tag{1.9}
\end{equation*}
$$

In the case of Fibonacci and Lucas sequences $\left(k=2, a_{1}=a_{2}=1\right)$, equation (1.5) is reduced to

$$
x^{2}-x-1=0,
$$

where the real positive solution x_{0} is the golden ratio: $(1+\sqrt{5}) / 2$.
It is obvious from equation (1.6) that

$$
\begin{equation*}
1 \leq a_{1}<x_{0}<\left(a_{1}+a_{2}+\cdots+a_{k}\right) \tag{1.10}
\end{equation*}
$$

Here $\left(a_{1}+a_{2}+\cdots+a_{k}\right) \geq\left(a_{1}+1\right)$, for at least a_{1} and a_{k} are natural numbers.

Figure 1: An example of a simple function $h(x)$ and its inverse function $h^{-1}(x)$

Remark 1.4. Since the function $h(x)$ is a decreasing function,

$$
\text { if } 0<x<x_{0} \text {, then } x_{0}<h(x) \text {, and if } x_{0}<x \text {, then } h(x)<x_{0} .
$$

We then introduce a function $h(h(x))$, a function of the function $h(x)$. We then put that $c_{j+1}=h\left(h\left(c_{j}\right)\right)$ and $d_{j+1}=h\left(h\left(d_{j}\right)\right)$, where $0<c_{j}<x_{0}, x_{0}<d_{j}$, and j is any positive integer. Since the function $h(h(x))$ is an increasing function, we obtain the following remark.
Remark 1.5. If $c_{j}<h\left(d_{j}\right)$ and $h\left(c_{j}\right)<d_{j}$, then

$$
c_{j+1}<h\left(d_{j+1}\right) \text { and } h\left(c_{j+1}\right)<d_{j+1} .
$$

Further, note that x_{0} is also one of the solutions to the following equation:

$$
\begin{equation*}
x=h(h(x)) . \tag{1.11}
\end{equation*}
$$

Definition 1.6. If equation (1.11) has no real positive solution other than x_{0}, then we suppose that the function $h(x)$ defined by (1.7) is "simple".

Let the function $h(x)$ be NOT simple. Then, there exists a real positive number $e\left(\neq x_{0}\right)$ such that $e=h(h(e))$. In this case, if we put $g=h(e) \neq x_{0}$, then $e=h(g)$ and $g=h(e)=h(h(g))$. Hence, equation (1.11) has at least two real positive solutions e, g other than x_{0}.

In this case, using the inverse function $h^{-1}(x)$ of the function $h(x)$, the relations $g=h(e)$ and $e=h(g)$ can be rewritten as

$$
\begin{equation*}
g=h^{-1}(e)=h(e) \quad \text { and } e=h^{-1}(g)=h(g) . \tag{1.12}
\end{equation*}
$$

This means that if the function $h(x)$ is simple, $h(x)$ and $h^{-1}(x)$ never cross at any point other than x_{0} in the range $x>0$ as shown in Figure 1.

We then use the above-mentioned definitions $c_{j+1}=h\left(h\left(c_{j}\right)\right)$ and $d_{j+1}=$ $h\left(h\left(d_{j}\right)\right)$, where $0<c_{j}<x_{0}$ and $x_{0}<d_{j}$. Referring to Figure 1, under the condition that the function $h(x)$ is simple, if $x<x_{0}$, then $h(x)<h^{-1}(x)$, and if $x_{0}<x$, then $h^{-1}(x)<h(x)$. Hence, since $h\left(c_{j}\right)=h^{-1}\left(c_{j+1}\right)$, we have $c_{j}<c_{j+1}<x_{0}$. Similarly, since $h\left(d_{j}\right)=h^{-1}\left(d_{j+1}\right)$, we have $x_{0}<d_{j+1}<d_{j}$. Thus, as j increases, the numbers c_{j} and d_{j} converge to x_{0}. These are proved as follows:
Lemma 1.7. Let the function $h(x)$ be simple. And suppose that $c_{j+1}=h\left(h\left(c_{j}\right)\right)$ and $d_{j+1}=h\left(h\left(d_{j}\right)\right)$, where $0<c_{j}<x_{0}$ and $x_{0}<d_{j}$. Then

$$
c_{j}<c_{j+1}<x_{0} \quad \text { and } \quad x_{0}<d_{j+1}<d_{j}
$$

Proof. First, from Remark 1.4, we have $x_{0}<h\left(c_{i}\right)$. Then by applying Remark 1.4 once more, we have $h\left(h\left(c_{j}\right)\right)=c_{j+1}<x_{0}$. In the same way, we have $h\left(d_{j}\right)<x_{0}$, which leads to $x_{0}<h\left(h\left(d_{j}\right)\right)=d_{j+1}$. Second, let us define that

$$
\begin{equation*}
H(x)=x-h(h(x)) . \tag{1.13}
\end{equation*}
$$

When x increases from 0 to infinity, as the function $h(x)$ decreases from infinity to $a_{1}(\geq 1)$, the function $h(h(x))$ increases from a_{1} to $h\left(a_{1}\right)$. Thus, $H(x)<0$ when $0<x \leq 1$, and $H(x)>0$ at infinity. Further, $H\left(x_{0}\right)=0$, for $h\left(h\left(x_{0}\right)\right)=h\left(x_{0}\right)=x_{0}$.

Then, since $h(x)$ is simple, $H(x)$ never reaches 0 other than x_{0}. Hence, we see that if $0<x<x_{0}$, then $H(x)<0$, and if $x_{0}<x$, then $H(x)>0$. This means that $c_{j}<c_{j+1}$ and $d_{j+1}<d_{j}$, establishing Lemma 1.7.

Lemma 1.8. We assume the same conditions as in Lemma 1.7 and that $0<$ $c_{1}<x_{0}$ and $x_{0}<d_{1}$. Then, as j increases, the numbers c_{j} and d_{j} converge to x_{0}.

Proof. It follows from Lemma 1.7 that

$$
\begin{equation*}
c_{1}<c_{2}<\cdots<c_{j-1}<c_{j}<x_{0}<d_{j}<d_{j-1}<\cdots<d_{2}<d_{1} \tag{1.14}
\end{equation*}
$$

Thus, by the Weierstrass' theorem the sequence $\left\{c_{j}\right\}$ converges to $\sup \left\{c_{j}\right\}$. Suppose that $\sup \left\{c_{j}\right\}=c_{s}<x_{0}$, then there exists a number c such that $c<$ $c_{s}<h(h(c))<x_{0}$. Then if we put that $0<\varepsilon<c_{s}-c$, then $c<c_{s}-\varepsilon$ and there is an integer j_{0}, which satisfies the following relation:

$$
\begin{equation*}
c<c_{s}-\varepsilon<c_{j_{0}}<c_{s} \quad \text { and } c_{s}<h(h(c))<h\left(h\left(c_{j_{0}}\right)\right)=c_{j_{0}+1}<x_{0} . \tag{1.15}
\end{equation*}
$$

This means that c_{s} is not $\sup \left\{c_{j}\right\}$ and x_{0} is $\sup \left\{c_{j}\right\}$. Thus, c_{j} converges to x_{0}. On the contrary, the sequence $\left\{d_{j}\right\}$ converges to $\inf \left\{d_{j}\right\}$, which is x_{0}.

If equation (1.11) has one pair of real positive solutions other than x_{0} as shown in Figure 2, the function $h(x)$ is not simple. From Figure 2, we see that $c_{j+1}=h\left(h\left(c_{j}\right)\right)<c_{j}<x_{0}$, and $x_{0}<d_{j}<h\left(h\left(d_{j}\right)\right)=d_{j+1}$. Thus, as j increases, c_{j} and d_{j} move away from x_{0}.

Figure 2: An example of a non-simple function $h(x)$ and its inverse function $h^{-1}(x)$

2 A Theorem and the proof

Theorem 2.1. In a generalized Fibonacci-like sequence $\left\{S_{n}\right\}$ defined by (1.1), suppose that the function $h(x)$ defined by (1.7) is simple in the sense of Definition 1.6. Then, as n increases the ratio $\frac{S_{n}}{S_{n-1}}$ converges to x_{0}, where x_{0} is the only one real positive solution to equation (1.8) or (1.5).

Proof. First, since a_{1} and S_{k-1} are natural numbers in (1.1), if $n \geq k$, then $S_{n} \geq 1$. Further since a_{k} is also a natural number, if $n \geq 2 k$, then

$$
\begin{equation*}
S_{n} \geq a_{1} S_{n-1}+a_{k} S_{n-k}>a_{1} S_{n-1} \tag{2.1}
\end{equation*}
$$

From (2.1) it follows that

$$
\begin{equation*}
\frac{S_{n}}{S_{n-1}}>a_{1} \geq 1, \quad \text { for } n \geq 2 k \tag{2.2}
\end{equation*}
$$

Here, suppose that $n \geq 3 k$ and let us write

$$
\begin{equation*}
\frac{S_{n-i}}{S_{n-(i+1)}}=y_{n-i}>a_{1}, \quad \text { for } i=0,1, \ldots, k-1 \tag{2.3}
\end{equation*}
$$

Relations (2.3) can be rewritten as

$$
\begin{equation*}
S_{n-(k-1)}=y_{n-(k-1)} S_{n-k}, \tag{2.4}
\end{equation*}
$$

$$
\begin{gather*}
S_{n-(k-2)}=y_{n-(k-2)} S_{n-(k-1)}=y_{n-(k-2)} y_{n-(k-1)} S_{n-k}, \tag{2.4-1}\\
S_{n-(k-3)}=y_{n-(k-3)} S_{n-(k-2)}=y_{n-(k-3)} y_{n-(k-2)} y_{n-(k-1)} S_{n-k} \tag{2.4-2}
\end{gather*}
$$

and finally

$$
\begin{equation*}
S_{n}=y_{n} S_{n-1}=y_{n} y_{n-1} y_{n-2} \cdots y_{n-(k-2)} y_{n-(k-1)} S_{n-k} \tag{k-1}
\end{equation*}
$$

By putting relations (2.4) to (2.4-(k-1)) in (1.1), we obtain

$$
\begin{equation*}
y_{n} y_{n-1} \cdots y_{n-(k-1)} S_{n-k}=\sum_{i=1}^{k-1} a_{i} y_{n-i} y_{n-(i+1)} \cdots y_{n-(k-1)} S_{n-k}+a_{k} S_{n-k} \tag{2.5}
\end{equation*}
$$

Dividing both sides of (2.5) by

$$
y_{n-1} y_{n-2} \cdots y_{n-(k-1)} S_{n-k}
$$

leads to

$$
\begin{equation*}
y_{n}=a_{1}+\frac{a_{2}}{y_{n-1}}+\frac{a_{3}}{y_{n-1} y_{n-2}}+\cdots+\frac{a_{k}}{y_{n-1} y_{n-2} \cdots y_{n-(k-1)}} \tag{2.6}
\end{equation*}
$$

which is equivalent to the sequence $\left\{S_{n}\right\}$ defined by (1.1). It should be noted that by replacing each $y_{i}(i=n-1, n-2, \ldots, n-(k-1))$ by x in the right side of (2.6) we obtain the function $h(x)$ defined by (1.7).

Second, considering (2.2) and (2.6), we see that

$$
\begin{equation*}
1 \leq a_{1}<y_{n}<\left(a_{1}+a_{2}+\cdots+a_{k}\right), \quad \text { for } n \geq 3 k \tag{2.7}
\end{equation*}
$$

Comparing (1.10) and (2.7), we can choose two real numbers c_{1} and d_{1} such that

$$
\begin{gather*}
1<c_{1}<y_{n}<d_{1} \quad \text { for } n=3 k, 3 k+1, \ldots, 4 k-1 \tag{2.8}\\
1 \leq a_{1}<c_{1}<x_{0}<d_{1}<\left(a_{1}+a_{2}+\cdots+a_{k}\right) \tag{2.9}
\end{gather*}
$$

The inequality (2.8) leads to

$$
\begin{equation*}
\frac{1}{d_{1}}<\frac{1}{y_{n}}<\frac{1}{c_{1}} \quad \text { for } n=3 k, 3 k+1, \ldots, 4 k-1 \tag{2.10}
\end{equation*}
$$

By putting inequality (2.10) in (2.6) we see that

$$
\begin{equation*}
a_{1}+\frac{a_{2}}{d_{1}}+\frac{a_{3}}{d_{1}^{2}}+\cdots+\frac{a_{k}}{d_{1}^{k-1}}<y_{n}<a_{1}+\frac{a_{2}}{c_{1}}+\frac{a_{3}}{c_{1}^{2}}+\cdots+\frac{a_{k}}{c_{1}^{k-1}} \quad \text { for } n=4 k \tag{2.11}
\end{equation*}
$$

Using the function $h(x)$ defined by (1.7), inequality (2.11) can be expressed as

$$
\begin{equation*}
h\left(d_{1}\right)<y_{n}<h\left(c_{1}\right) \quad \text { for } n=4 k . \tag{2.12}
\end{equation*}
$$

Here, by substituting d_{1} and c_{1} for x in (1.7), respectively, it follows that

$$
a_{1}<h\left(d_{1}\right) \quad \text { and } \quad h\left(c_{1}\right)<\left(a_{1}+a_{2}+\cdots+a_{k}\right) .
$$

We then put that $c_{j+1}=h\left(h\left(c_{j}\right)\right)$ and $d_{j+1}=h\left(h\left(d_{j}\right)\right)$, where j is any positive integer. By comparing (2.8) and (2.12), the numbers c_{1} and d_{1} are classified into three cases:
Case 1 where $c_{1}<h\left(d_{1}\right)$ and $h\left(c_{1}\right)<d_{1}$,
Case 2 where $h\left(d_{1}\right)<c_{1}$ and $h\left(c_{1}\right)<d_{1}$, and
Case 3 where $c_{1}<h\left(d_{1}\right)$ and $d_{1}<h\left(c_{1}\right)$.
It should be noted that there is no case where $h\left(d_{1}\right)<c_{1}$ and $d_{1}<h\left(c_{1}\right)$. Because if $h\left(d_{1}\right)<c_{1}$, then $h\left(c_{1}\right)<h\left(h\left(d_{1}\right)\right)$. Considering Lemma 1.7, we see that $h\left(h\left(d_{1}\right)\right)<d_{1}$ and hence $h\left(c_{1}\right)<d_{1}$.
(Case 1 where $c_{1}<h\left(d_{1}\right)$ and $h\left(c_{1}\right)<d_{1}$)
In this case, from Remark 1.5, $c_{j}<h\left(d_{j}\right)$ and $h\left(c_{j}\right)<d_{j}$ for any positive integer j. And since $h(x)$ is a decreasing function, it follows that

$$
\begin{equation*}
d_{j+1}=h\left(h\left(d_{j}\right)\right)<h\left(c_{j}\right) \text { and } h\left(d_{j}\right)<h\left(h\left(c_{j}\right)\right)=c_{j+1} . \tag{2.13}
\end{equation*}
$$

Then, inequality (2.8), combined with inequality (2.12), leads to

$$
\begin{equation*}
c_{1}<h\left(d_{1}\right)<y_{n}<h\left(c_{1}\right)<d_{1} \quad \text { for } n=4 k, 4 k+1, \ldots, 5 k-1 . \tag{2.14}
\end{equation*}
$$

Inequality (2.14) leads to

$$
\begin{equation*}
\frac{1}{h\left(c_{1}\right)}<\frac{1}{y_{n}}<\frac{1}{h\left(d_{1}\right)} \quad \text { for } n=4 k, 4 k+1, \ldots, 5 k-1 . \tag{2.15}
\end{equation*}
$$

By putting inequality (2.15) in (2.6) and using the function $h(x)$, we see that

$$
\begin{equation*}
c_{2}=h\left(h\left(c_{1}\right)\right)<y_{n}<h\left(h\left(d_{1}\right)\right)=d_{2} \quad \text { for } n=5 k . \tag{2.16}
\end{equation*}
$$

We then apply Lemma 1.7 and inequality (2.13) to (2.14) and (2.16). This leads to

$$
\begin{equation*}
c_{1}<h\left(d_{1}\right)<c_{2}<y_{n}<d_{2}<h\left(c_{1}\right)<d_{1} \quad \text { for } n=5 k, \ldots, 6 k-1 . \tag{2.17}
\end{equation*}
$$

By repeating the above-mentioned process, when $n \geq(2 j+1) k$, the number y_{n} is expressed as

$$
\begin{equation*}
c_{1}<c_{2}<\cdots<c_{j}<y_{n}<d_{j}<\cdots<d_{2}<d_{1} \tag{2.18}
\end{equation*}
$$

According to Lemma 1.8, as j increases, the number c_{j} and d_{j} converge to x_{0} in (2.18), and so does y_{n}.
(Case 2 where $h\left(d_{1}\right)<c_{1}$ and $h\left(c_{1}\right)<d_{1}$)
In this case, from Lemma 1.7, $d_{j+1}<d_{j}$. And considering that $h(x)$ is a decreasing function, we see

$$
\begin{equation*}
h\left(d_{j}\right)<h\left(d_{j+1}\right) \tag{2.19}
\end{equation*}
$$

Then, inequality (2.12) can be expressed as

$$
\begin{equation*}
h\left(d_{1}\right)<y_{n}<h\left(c_{1}\right)<d_{1} \quad \text { for } n=4 k . \tag{2.20}
\end{equation*}
$$

Since $h\left(d_{1}\right)<c_{1}$, inequalities (2.8) and (2.20) can be unified into

$$
\begin{equation*}
h\left(d_{1}\right)<y_{n}<d_{1} \quad \text { for } n=3 k+1,3 k+2, \ldots, 4 k . \tag{2.21}
\end{equation*}
$$

Inequality (2.21) leads to

$$
\begin{equation*}
\frac{1}{d_{1}}<\frac{1}{y_{n}}<\frac{1}{h\left(d_{1}\right)} \quad \text { for } n=3 k+1,3 k+2, \ldots, 4 k \tag{2.22}
\end{equation*}
$$

By putting inequality (2.22) in (2.6) and using the function $h(x)$, we see that

$$
\begin{equation*}
h\left(d_{1}\right)<y_{n}<h\left(h\left(d_{1}\right)\right)=d_{2} \quad \text { for } n=4 k+1 . \tag{2.23}
\end{equation*}
$$

Applying Lemma 1.7 to (2.21) and (2.23) yields

$$
\begin{equation*}
h\left(d_{1}\right)<y_{n}<d_{2}<d_{1} \quad \text { for } n=4 k+1,4 k+2, \ldots, 5 k . \tag{2.24}
\end{equation*}
$$

Inequality (2.24) leads to

$$
\begin{equation*}
\frac{1}{d_{2}}<\frac{1}{y_{n}}<\frac{1}{h\left(d_{1}\right)} \quad \text { for } n=4 k+1, \ldots, 5 k \tag{2.25}
\end{equation*}
$$

By putting inequality (2.25) in (2.6) and using the function $h(x)$, we see that

$$
\begin{equation*}
h\left(d_{2}\right)<y_{n}<h\left(h\left(d_{1}\right)\right)=d_{2} \quad \text { for } n=5 k+1 . \tag{2.26}
\end{equation*}
$$

Considering inequality (2.19) and Lemma 1.7, inequalities (2.24) and (2.26) lead to

$$
\begin{equation*}
h\left(d_{1}\right)<h\left(d_{2}\right)<y_{n}<d_{2}<d_{1} \quad \text { for } n=5 k+1,5 k+2, \ldots, 6 k . \tag{2.27}
\end{equation*}
$$

By repeating the above-mentioned process, when $n \geq((2 j+1) k+1)$, the number y_{n} is expressed as

$$
\begin{equation*}
h\left(d_{1}\right)<h\left(d_{2}\right)<\cdots<h\left(d_{j}\right)<y_{n}<d_{j}<\cdots<d_{2}<d_{1} . \tag{2.28}
\end{equation*}
$$

According to Lemma 1.8, as j increases, the number d_{j} converges to x_{0} in (2.28), and so do $h\left(d_{j}\right)$ and y_{n}.
(Case 3 where $c_{1}<h\left(d_{1}\right)$ and $d_{1}<h\left(c_{1}\right)$)
In this case, by analogy with Case 2 , we see that when $n \geq((2 j+1) k+1)$, the number y_{n} is expressed as

$$
\begin{equation*}
c_{1}<c_{2}<\cdots<c_{j}<y_{n}<h\left(c_{j}\right)<\cdots<h\left(c_{2}\right)<h\left(c_{1}\right) . \tag{2.29}
\end{equation*}
$$

According to Lemma 1.8, as j increases, the number c_{j} converges to x_{0} in (2.29), and so do $h\left(c_{j}\right)$ and y_{n}.

Figure 3: Another example of a non-simple function $h(x)$ and its inverse function $h^{-1}(x)$

There may be cases where even if the function $h(x)$ is not simple in the sense of Definition 1.6, the ratio $\frac{S_{n}}{S_{n-1}}$ converges to x_{0}. For example, if equation (1.11) has two pairs of real positive solutions other than x_{0} as shown in Figure 3, the function $h(x)$ is not simple. In this case, we denote the two solutions nearest to x_{0} as e and g, and if there exits a number n_{0} such that $e<S_{n_{0}-i} / S_{n_{0}-i-1}(=$ $\left.y_{n_{0}-i}\right)<g$ for $i=0, \ldots, k-1$, then we can choose c_{1}, d_{1} such that $e<c_{1}<$ $y_{n_{0}-i}<d_{1}<g$. Then from Figure 3, we see that as j increases, c_{j} and d_{j} converge to x_{0}. Thus, $\frac{S_{n}}{S_{n-1}}$ converges to x_{0}.

3 Examples

3.1 Fibonacci, Lucas, and Pell sequences

In the case where $k=2$ and a_{1} and a_{2} are any natural numbers, a generalized Fibonacci-like sequence $\left\{S_{n}\right\}$ defined by (1.1) is expressed as

$$
\begin{equation*}
S_{n}=a_{1} S_{n-1}+a_{2} S_{n-2} \quad \text { for } n \geq 2, \tag{3.1}
\end{equation*}
$$

where S_{1} is any natural number and S_{0} is a non-negative integer. The corresponding function $h(x)$ defined by (1.7) is as follows:

$$
\begin{equation*}
h(x)=a_{1}+\frac{a_{2}}{x} . \tag{3.2}
\end{equation*}
$$

This case includes Fibonacci numbers $\left(k=2, a_{1}=a_{2}=1, S_{0}=0, S_{1}=1\right)$ [1], Lucas numbers ($k=2, a_{1}=a_{2}=1, S_{0}=2, S_{1}=1$) [3], and Pell numbers ($k=2, a_{1}=2, a_{2}=1, S_{0}=0, S_{1}=1$) [2]. By substituting function (3.2) for $h(x)$ in equation (1.8), we obtain

$$
\begin{equation*}
x^{2}-a_{1} x-a_{2}=0 \tag{3.3}
\end{equation*}
$$

The only one real positive solution x_{0} to equation (3.3) is as follows:

$$
\begin{equation*}
x_{0}=\frac{a_{1}+\sqrt{a_{1}^{2}+4 a_{2}}}{2} \tag{3.4}
\end{equation*}
$$

Corollary 3.1. The ratio $\frac{S_{n}}{S_{n-1}}$ of the sequence defined by (3.1) converges to x_{0} expressed by (3.4).

Proof. If the function $h(x)$ defined by (3.2) is not simple, there exist two real positive numbers e, g such that

$$
\begin{gather*}
g=a_{1}+\frac{a_{2}}{e} \neq e, \quad \text { and } \tag{3.5}\\
e=a_{1}+\frac{a_{2}}{g} \neq x_{0} . \tag{3.6}
\end{gather*}
$$

These equations lead to $e=g$, which means that the function $h(x)$ defined by (3.2) is simple. Thus from Theorem 2.1 we see that the ratio $\frac{S_{n}}{S_{n-1}}$ converges to x_{0}.

3.2 A case where k is any integer

In the case where k is any integer ≥ 2 and $a_{1}=a_{2}=\cdots=a_{k}=1$, a generalized Fibonacci-like sequence $\left\{S_{n}\right\}$ defined by (1.1) and the corresponding function $h(x)$ defined by (1.7) are as follows:

$$
\left.\begin{array}{l}
S_{n}=S_{n-1}+S_{n-2}+\cdots+S_{n-k} \quad \text { for } n \geq k \\
h(x)
\end{array}\right)=1+\frac{1}{x}+\frac{1}{x^{2}}+\cdots+\frac{1}{x^{k-1}} .
$$

Corollary 3.2. The ratio $\frac{S_{n}}{S_{n-1}}$ of the sequence defined by (3.7) converges to x_{0}, which is the real positive solution to equation (1.8), where $h(x)$ is defined by (3.8).

Proof. We denote function (3.8) as $h_{k}(x)$ and suppose that the function $h_{k}(x)$ is not simple. Then there exist at lease two positive real numbers e and g such that

$$
\begin{align*}
& g=h_{k}(e)=\frac{\left(\frac{1}{e}\right)^{k}-1}{\frac{1}{e}-1} \neq e \tag{3.9}\\
& e=h_{k}(g)=\frac{\left(\frac{1}{g}\right)^{k}-1}{\frac{1}{g}-1} \neq x_{0} \tag{3.10}
\end{align*}
$$

From (3.9) and (3.10) it follows that

$$
\begin{align*}
& g\left(\frac{1}{e}-1\right)=\left(\frac{1}{e}\right)^{k}-1, \quad \text { thus, } \quad g\left(\frac{1}{e}-1\right)+1=\left(\frac{1}{e}\right)^{k}, \tag{3.11}\\
& e\left(\frac{1}{g}-1\right)=\left(\frac{1}{g}\right)^{k}-1, \quad \text { thus, } \quad e\left(\frac{1}{g}-1\right)+1=\left(\frac{1}{g}\right)^{k} . \tag{3.12}
\end{align*}
$$

Here we multiply the both sides of the second equations of (3.11) and (3.12) by e and g, respectively. Then we obtain

$$
\begin{align*}
& g-e g+e=\left(\frac{1}{e}\right)^{k-1} \tag{3.13}\\
& e-e g+g=\left(\frac{1}{g}\right)^{k-1} \tag{3.14}
\end{align*}
$$

Comparing (3.13) and (3.14), we see that

$$
\begin{equation*}
\left(\frac{1}{e}\right)^{k-1}=\left(\frac{1}{g}\right)^{k-1}, \quad \text { that is, } \quad e=g \tag{3.15}
\end{equation*}
$$

This means that the function $h_{k}(x)$ is simple. Thus from Theorem 2.1 it follows that the ratio $\frac{S_{n}}{S_{n-1}}$ converges to x_{0}.

Then suppose that $k=6$ and $S_{0}=S_{1}=\cdots=S_{5}=1$ in (3.7) and (3.8). In this case, equation (1.8) will be

$$
\begin{equation*}
x=1+\frac{1}{x}+\frac{1}{x^{2}}+\frac{1}{x^{3}}+\frac{1}{x^{4}}+\frac{1}{x^{5}} . \tag{3.16}
\end{equation*}
$$

We calculated the only one real positive solution x_{0} to (3.16), which was approximately 1.984 . We also calculated the ratio $\frac{S_{n}}{S_{n-1}}$ of the sequence (3.7) for $n=6,7,8, \ldots$. The calculation shows that the ratio converges to x_{0}.

Note that the ratio converges to x_{0} regardless of the values of S_{0}, \ldots, S_{5}, provided that S_{0}, \ldots, S_{4} are non-negative integers and S_{5} is a natural number.

3.3 A case having a non-simple function

In the case where $k=3, a_{1}=a_{2}=1, a_{3}=10$, a generalized Fibonacci-like sequence $\left\{S_{n}\right\}$ defined by (1.1) and the corresponding function defined by (1.7) are as follows:

$$
\begin{gather*}
S_{n}=S_{n-1}+S_{n-2}+10 \cdot S_{n-3} \text { for } n \geq 3 \tag{3.17}\\
h(x)=1+\frac{1}{x}+\frac{10}{x^{2}} \tag{3.18}
\end{gather*}
$$

We denote function (3.18) as $h_{3}(x)$.

Lemma 3.3. The function $h_{3}(x)$ is not simple in the sense of Definition 1.6.
Proof. Suppose that there exist two real positive numbers e and g such that

$$
\begin{gather*}
g=h_{3}(e)=1+\frac{1}{e}+\frac{10}{e^{2}}>e \tag{3.19}\\
e=h_{3}(g)=1+\frac{1}{g}+\frac{10}{g^{2}} \tag{3.20}
\end{gather*}
$$

By solving (3.19) and (3.20), we have

$$
\begin{equation*}
e=\frac{9-\sqrt{41}}{2}, \quad g=\frac{9+\sqrt{41}}{2} . \tag{3.21}
\end{equation*}
$$

This means that equation (1.11), where $h(x)=h_{3}(x)$, has two real positive solutions e, g other than x_{0}.

Thus, Theorem 2.1 does not hold for the sequence defined by (3.17). We calculated the only one real positive solution x_{0} to the equation $x=h_{3}(x)$, which was approximately 2.720 . Then, under the assumption that $S_{0}=S_{1}=$ $S_{2}=1$, we also calculated the ratio $\frac{S_{n}}{S_{n-1}}$ of the sequence (3.17) for $n=3,4,5, \ldots$. According to the calculation, as n increases the ratio seems to fluctuate about x_{0}, or at least converge very slowly to x_{0}.

4 A case where $a_{1}=0$

Let k be any integer ≥ 3, and suppose that $a_{1}=0, a_{2}=a_{3}=\cdots=a_{k}=1$. Then, another Fibonacci-like sequence $\left\{P_{n}\right\}$ is defined by

$$
\begin{equation*}
P_{n}=P_{n-2}+P_{n-3}+\cdots+P_{n-k}, \quad \text { for } n \geq k \tag{4.1}
\end{equation*}
$$

where P_{k-1} and P_{k-2} are natural numbers and $P_{i}(i=0,1, \ldots, k-3)$ are nonnegative integers. The sequence $\left\{P_{n}\right\}$ includes Padovan sequence $\left(k=3, a_{1}=\right.$ $0, a_{2}=a_{3}=1, P_{0}=P_{1}=P_{2}=1$) [4].

By substituting x for $\frac{P_{n-i}}{P_{n-1-i}}(i=0,1, \ldots, k-1)$ in the sequence (4.1), an equation for determining x is expressed as

$$
\begin{equation*}
x=\frac{1}{x}+\frac{1}{x^{2}}+\cdots+\frac{1}{x^{k-1}} . \tag{4.2}
\end{equation*}
$$

This equation can also be derived by putting $a_{1}=0$ and $a_{2}=a_{3}=\cdots=a_{k}=1$ in equation (1.6).

Here we denote the only one real positive solution to (4.2) as x_{0}. It can be easily verified that $x_{0}>1$. Further we define the right-side function of (4.2) as a function $p(x)$, namely

$$
\begin{equation*}
p(x)=\frac{1}{x}+\frac{1}{x^{2}}+\cdots+\frac{1}{x^{k-1}}=\frac{\left(\frac{1}{x}\right)^{k}-\frac{1}{x}}{\frac{1}{x}-1} . \tag{4.3}
\end{equation*}
$$

Figure 4: An example of a function $p(x)$ and its inverse function $p^{-1}(x)$

In order to check whether the function $p(x)$ is simple or not in the sense of Definition 1.6, using two real positive numbers e, g, we put

$$
\begin{align*}
& g=p(e)=\frac{\left(\frac{1}{e}\right)^{k}-\frac{1}{e}}{\frac{1}{e}-1} \tag{4.4}\\
& e=p(g)=\frac{\left(\frac{1}{g}\right)^{k}-\frac{1}{g}}{\frac{1}{g}-1} \tag{4.5}
\end{align*}
$$

From (4.4) and (4.5) we obtain that $e=g=x_{0}$. Thus, since the equation $x=p(p(x))$ has no real positive solution other than x_{0}, the function $p(x)$ is simple.

However, in order to check whether $x<p(p(x))$ in $x<x_{0}$ or not, by replacing x in (4.3) by 1 , we have $p(1)=k-1$. Then, since $k \geq 3$, it follows that

$$
\begin{align*}
p(p(1)) & =\frac{1}{k-1}+\frac{1}{(k-1)^{2}}+\cdots+\frac{1}{(k-1)^{k-1}} \tag{4.6}\\
& <\frac{1}{k-1} \times(k-1)=1 .
\end{align*}
$$

This means that if $x<x_{0}$, then $p(p(x))<x$ as shown in Figure 4. If we define that $c_{j}<x_{0}, c_{j+1}=p\left(p\left(c_{j}\right)\right)$ and $x_{0}<d_{j}, d_{j+1}=p\left(p\left(d_{j}\right)\right)$, then from Figure 4, we see that $c_{j+1}<c_{j}$ and $d_{j}<d_{j+1}$. Thus, as j increases, c_{j} and d_{j} move away from x_{0}.

Hence, Lemma 1.7 and Theorem 2.1 do not hold for the sequence $\left\{P_{n}\right\}$ defined by (4.1).

The audience are encouraged to develop a method to deal with the sequence $\left\{P_{n}\right\}$.

References

[1] George E. Andrews, 1969. Some Formulae for the Fibonacci Sequence with Generalizations, Fibonacci Quart., 7.2: 113-130.
[2] Wayne L. McDaniel, 1996. Triangular Numbers in the Pell Sequence, Fibonacci Quart., 34: 105-107.
[3] Neville Robbins, 1991. A New Formula for Lucas Numbers, Fibonacci Quart., 29.4: 362-363.
[4] Ian Stewart, 1996. Tales of a Neglected Number, Sci. Am., 274: 102-103.

[^0]: ${ }^{1}$ Gleaners, Saitama, JAPAN
 ${ }^{2}$ e-mail:o-pat-consulting@hotmail.co.jp

