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Abstract

A generalized Fibonacci-like sequence {S,}(for n > k) is defined by
a1Sn—1 + a28n—2 + --+ + arSn—_i. By substituting z for SS':: =
0,1,...,k — 1) in the sequence, an equation for determining x is derived

in the form of x = h(z). The equation has only one real positive solution

xo. It is proved that the ratio SSL converges to zo regardless of the val-
ues of Si_1,...,So under the condition that the function h(x) has certain

properties. It is shown that Fibonacci, Lucas, and Pell sequences satisfy
the condition.

MSC-class: 11B39 (Primary); 40A05, 97A20 (Secondary)

1 Definitions and Lemmas

Let k be any integer > 2, and a1 and ai be natural numbers. And suppose that
other a;(i = 2,...,k — 1) are non-negative integers.
Then, a generalized Fibonacci-like sequence {5, } is defined by

Spn=a1S,_1+a2Sn_o+ -+ arpSp_r, forn>k, (11)

where S;(i = 0,1,...,k — 2) are any non-negative integers, and S;_; is any
natural number. The sequence {S,} includes Fibonacci numbers [1], Lucas
numbers [3], and Pell numbers [2].

Here, we assume that as n increases the ratio Sfil converges to a real number
z. To determine z, let us write

_ _ Sn—(k—
Sn_ _ Sn-1 _ Sz (k=1 _ (1.2)
Snfl Sn72 Sn73 Snfk
Relations (1.2) can be rewritten as
Sn—(k—l) = I’Snfk, (1.3)
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Sn_(k_g) =5 —(k=1) = 1'2571,]6, (1.3—1)
Sn,(k,g) = Z‘Sn,(k,g) = xBSn_k, (1.3-2)

and finally
S, =28, 1 = xS, 4. (1.3-(k-1))

By putting relations (1.3) to (1.3-(k-1)) in (1.1), we obtain

k—1
Sk = aix" S,k + axSn_. (1.4)
=1

Dividing both sides of (1.4) by S,,_ yields an equation
zF = a1 a4+ ap_1z + ag. (1.5)

Lemma 1.1. Equation (1.5) has only one real solution in the range x > 0.

Proof. We divide the both sides of (1.5) by #¥~1. Hence we obtain

as as Q.
T=a — 4+ =+ , 1.6
1+x+x2+ +x’9*1 (1.6)
where a1 and aj are natural numbers and other a;(i = 2,3,...,k — 1) are non-

negative integers. In the range & > 0, since the right side of (1.6) decreases
strictly from infinity to a; as z increases from 0, equation (1.6) has only one
real positive solution and so does equation (1.5). O

Definition 1.2. We define the right-side function of (1.6) as a function h(x),

namely
as af

a2
h(l’):al—F?—Fﬁ‘F'“—ka_l. (17)
Using the function h(z), equation (1.6) can be rewritten as
x = h(x). (1.8)

Definition 1.3. We define the only one real positive solution to equation (1.5)
or (1.8) as zp, namely
xo = h(zo). (1.9)

In the case of Fibonacci and Lucas sequences (k = 2,a; = ag = 1), equation
(1.5) is reduced to
2 —x—1=0,

where the real positive solution z is the golden ratio: (1 ++/5)/2.
It is obvious from equation (1.6) that

1<a; <z < (a1 +ag+---+ag). (1.10)

Here (a1 +as+---+ag) > (a1 +1), for at least a; and ai are natural numbers.
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Figure 1: An example of a simple function h(x) and its inverse function h=!(x)

Remark 1.4. Since the function h(z) is a decreasing function,
if 0 <z < xp, then zg < h(z), and if z¢ < x, then h(x) < xo.

We then introduce a function h(h(x)), a function of the function h(z). We
then put that ¢; 11 = h(h(c;)) and dj1 = h(h(d;)), where 0 < ¢; < x¢, zo < dj,
and j is any positive integer. Since the function h(h(z)) is an increasing function,
we obtain the following remark.

Remark 1.5. If ¢; < h(d;) and h(c;) < dj, then
¢jt1 < h(djt1) and h(cj41) < djiq.
Further, note that x( is also one of the solutions to the following equation:
x = h(h(x)). (1.11)

Definition 1.6. If equation (1.11) has no real positive solution other than z,
then we suppose that the function h(z) defined by (1.7) is “simple”.

Let the function h(z) be NOT simple. Then, there exists a real positive
number e(# x() such that e = h(h(e)). In this case, if we put g = h(e) # xo,
then e = h(g) and g = h(e) = h(h(g)). Hence, equation (1.11) has at least two
real positive solutions e, g other than z.

In this case, using the inverse function h=!(x) of the function h(z), the
relations g = h(e) and e = h(g) can be rewritten as

g=h"'(e)=h(e) ande=h""'(g) = h(g). (1.12)



This means that if the function h(x) is simple, h(x) and h~!(x) never cross at
any point other than z( in the range x > 0 as shown in Figure 1.

We then use the above-mentioned definitions ¢;+1 = h(h(c;)) and d;41 =
h(h(d;)), where 0 < ¢; < zg and xy < d;. Referring to Figure 1, under the
condition that the function h(z) is simple, if < zg, then h(z) < h™1(z),
and if 7o < x, then h™'(z) < h(x). Hence, since h(c;) = h™'(c;j41), we have
¢j < ¢j+1 < xo. Similarly, since h(d;) = h™(dj+1), we have zg < dj11 < d;.
Thus, as j increases, the numbers c¢; and d; converge to xo. These are proved
as follows:

Lemma 1.7. Let the function h(x) be simple. And suppose that c;41 = h(h(c;))
and dj11 = h(h(d;)), where 0 < ¢; < zg and o < dj. Then

c; < Cj+1 < T and xo < dj+1 < dj.

Proof. First, from Remark 1.4, we have xy < h(¢;). Then by applying Remark

1.4 once more, we have h(h(cj)) = ¢j4+1 < zo. In the same way, we have
h(d;) < xo, which leads to zg < h(h(d;)) = dj41. Second, let us define that
H(z) =z — h(h(z)). (1.13)

When z increases from 0 to infinity, as the function h(x) decreases from
infinity to a1(> 1) , the function h(h(x)) increases from a; to h(ai) . Thus,
H(z) <0 when 0 < z <1, and H(z) > 0 at infinity. Further, H(z¢) = 0, for
h(h(zo)) = h(zo) = wo.

Then, since h(x) is simple, H(z) never reaches 0 other than zy. Hence, we
see that if 0 < z < z, then H(z) < 0, and if z9 < z, then H(z) > 0. This
means that ¢; < ¢;41 and dj1 < d;, establishing Lemma 1.7. O

Lemma 1.8. We assume the same conditions as in Lemma 1.7 and that 0 <
c1 < xg and xg < di. Then, as j increases, the numbers c; and d; converge to
Q-

Proof. 1t follows from Lemma 1.7 that
g << <1 <¢ <o <dj <dj,1 < <dy < dy. (114)

Thus, by the Weierstrass’ theorem the sequence {c;} converges to sup{c,}.
Suppose that sup{c;} = ¢; < xg, then there exists a number ¢ such that ¢ <
¢s < h(h(c)) < xzo. Then if we put that 0 < ¢ < ¢s — ¢, then ¢ < ¢; — ¢ and
there is an integer jo, which satisfies the following relation:

c<cs—e<cj, <cs andecs < h(h(c)) < h(h(cjy)) = Cjo+1 < 0. (1.15)
This means that ¢, is not sup{c;} and zq is sup{c;}. Thus, ¢; converges to .

On the contrary, the sequence {d;} converges to inf{d;}, which is x. O

If equation (1.11) has one pair of real positive solutions other than z( as
shown in Figure 2, the function h(z) is not simple. From Figure 2, we see
that ¢;j41 = h(h(c;)) < ¢; < @, and zg < d; < h(h(d;)) = d;j41. Thus, as j
increases, ¢; and d; move away from zo.
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Figure 2: An example of a non-simple function h(z) and its inverse function

h=H(x)

2 A Theorem and the proof

Theorem 2.1. In a generalized Fibonacci-like sequence {S,} defined by (1.1),
suppose that the function h(x) defined by (1.7) is simple in the sense of Defini-
tion 1.6. Then, as n increases the ratio g “— converges to To, where xq 1s the

only one real positive solution to equation (1.8) or (1.5).

Proof. First, since a; and Sk_1 are natural numbers in (1.1), if n > k, then
S, > 1. Further since aj, is also a natural number, if n > 2k, then

Sp > a1Sp—1+ apSp_g > a1.5,-1. (2.1)
From (2.1) it follows that

n

>ay >1, forn > 2k. (2.2)
Sn—l
Here, suppose that n > 3k and let us write
Snfi .
—— =Yp_; >a1, fori=0,1,...,k—1. (2.3)
Sn—(i+1)

Relations (2.3) can be rewritten as

Sn—(k—1) = Yn—(k—1)Sn—k> (2.4)



Sn—(k=2) = Yn—(k—2)Sn—(k—1) = Yn—(k—2)Yn—(k—1)Sn—k> (2.4-1)
Sn—(k=3) = Un—(k=3)Sn—(k=2) = Un—(k=3)Yn—(k—2)Un—(k—1)Sn—k,  (2.4-2)
and finally

Sn - ynSnfl = YnYn—1Yn—2""" yn—(k—Q)yn—(k—l)Snfk' (24'(k'1))
By putting relations (2.4) to (2.4-(k-1)) in (1.1), we obtain

k—1
YnlYn—1-"" ynf(kfl)snfk = Z AiYn—iYn—(i+1) ~°* ynf(kfl)Snfk + apSn—k.
i=1
(2.5)
Dividing both sides of (2.5) by
Yn—-1Yn—2" " yn—(k—l)Snfk
leads to
a a a
Yo =1+ : ., (26)
Yn—1 Yn—1Yn—2 Yn—1Yn—2""" Yn—(k-1)

which is equivalent to the sequence {S,} defined by (1.1). It should be noted
that by replacing each y;(i =n—1,n—2,...,n— (k—1)) by « in the right side
of (2.6) we obtain the function h(z) defined by (1.7).

Second, considering (2.2) and (2.6), we see that

1<a; <yn<(ag+as+---+ag), forn>3k. (2.7)

Comparing (1.10) and (2.7), we can choose two real numbers ¢; and d; such
that

1< <yp<dy forn=3k3k+1,...,4k—1, (2.8)
1§a1<cl<x0<d1<(a1+a2+~~+ak). (29)

The inequality (2.8) leads to

1 1 1
— < —<— forn=3k3k+1,...,4k — 1. (2.10)
dy Yn C1

By putting inequality (2.10) in (2.6) we see that
as ag
0724" . +ij for n = 4k. (211)

a Qa, a a
art oy by <y <art
1 1 1

dq d% dlffl

Using the function h(z) defined by (1.7), inequality (2.11) can be expressed
as
h(di) < yn < h(c1) forn =4k. (2.12)

Here, by substituting d; and ¢; for z in (1.7), respectively, it follows that

a1 < h(dy) and h(cr) < (a1 +az+ -+ ag).



We then put that c¢;1 = h(h(c;)) and dj 1 = h(h(d;)), where j is any
positive integer. By comparing (2.8) and (2.12), the numbers ¢; and d; are
classified into three cases:

Case 1 where ¢; < h(dy) and h(cy) < dy,
Case 2 where h(dy) < ¢; and h(c;) < dy, and
Case 3 where ¢; < h(dy) and dy < h(cy).

It should be noted that there is no case where h(di) < ¢; and d; < h(cq).
Because if h(dy) < c¢1, then h(c;) < h(h(dy)). Considering Lemma 1.7, we see
that h(h(dy)) < di and hence h(cy) < dj.

(Case 1 where ¢; < h(dy) and h(cq) < dy)

In this case, from Remark 1.5, ¢; < h(d;) and h(c;) < d; for any positive
integer j. And since h(z) is a decreasing function, it follows that

djy1 = h(h(d;)) < h(c;) and h(d;) < h(h(c;)) = ¢j41. (2.13)

Then, inequality (2.8), combined with inequality (2.12), leads to
c1 < h(dy) <yn < h(c1) <dy forn=4k,4k+1,...,5k — 1. (2.14)
Inequality (2.14) leads to
1

<Lt
h(c1) ~yn  h(di)

forn =4k, 4k +1,...,5k — 1. (2.15)

By putting inequality (2.15) in (2.6) and using the function h(z), we see that
co = h(h(c1)) < yn < h(h(d1)) =ds for n = b5k. (2.16)

We then apply Lemma 1.7 and inequality (2.13) to (2.14) and (2.16). This leads
to

c1 < h(dy) <eca <yp<de <h(c1) <dy forn=>5k,...,6k—1 (2.17)

By repeating the above-mentioned process, when n > (25 + 1)k, the number
Yn 1S expressed as

<< < <Y, <dj <o <dg <dy. (2.18)

According to Lemma 1.8, as j increases, the number ¢; and d; converge to xg
in (2.18), and so does y,.

(Case 2 where h(d1) < ¢1 and h(c1) < dq)
In this case, from Lemma 1.7, d; 41 < dj. And considering that h(z) is a

decreasing function,we see
h(d;) < h(dj+1) (2.19)



Then, inequality (2.12) can be expressed as
h(di) < yn < h(c1) <dy forn = 4k. (2.20)
Since h(d1) < ¢1, inequalities (2.8) and (2.20) can be unified into

h(d1) <yn <dy forn=3k+1,3k+2,...,4k. (2.21)

< L < L

By putting inequality (2.22) in (2.6) and using the function h(z), we see that

Inequality (2.21) leads to
1
N forn=3k+1,3k+2,...,4k. (2.22)
1

h(d1) < yn < h(h(dy)) =ds forn =4k + 1. (2.23)
Applying Lemma 1.7 to (2.21) and (2.23) yields
hidy) < yn <dg <dy forn=4k+1,4k+2,..., 5k. (2.24)
Inequality (2.24) leads to

111
d2 Yn h(dl)

By putting inequality (2.25) in (2.6) and using the function h(z), we see that

forn=4k+1,...,5k (2.25)

h(dy) < yn < h(h(dy)) = dy forn = 5k + 1. (2.26)

Considering inequality (2.19) and Lemma 1.7, inequalities (2.24) and (2.26)
lead to

h(dy) < h(da) < yn <do <dy forn=>5k+1,5k+2,...,6k. (2.27)

By repeating the above-mentioned process, when n > ((2j + 1)k + 1), the
number y,, is expressed as

h(di) < h(da) <--- < h(d;) <yn <dj <--- <dy <ds. (2.28)

According to Lemma 1.8, as j increases, the number d; converges to zg in (2.28),
and so do h(d;) and y,.

(Case 3 where ¢1 < h(dy) and di < h(c1))

In this case, by analogy with Case 2, we see that when n > ((25 + 1)k + 1),
the number y,, is expressed as

1 <ca < <¢ <yn < h(e) < <h(e2) < h(er). (2.29)

According to Lemma 1.8, as j increases, the number ¢; converges to zg in (2.29),
and so do h(c;) and y,. O



y

atat.taf — — N\ — — — — — — — — -

h(er)

h(c2) N

\

h(d) >
h(d)y—

|
\
\
(@)l == = HH
\
\
|

NS

e dodd

Figure 3: Another example of a non-simple function h(z) and its inverse function
h™H(x)

There may be cases where even if the function h(x) is not simple in the sense
of Definition 1.6, the ratio sfil converges to x. For example, if equation (1.11)
has two pairs of real positive solutions other than xy as shown in Figure 3, the
function h(x) is not simple. In this case, we denote the two solutions nearest to
zo as e and g, and if there exits a number ng such that e < S, —i/Sno—i—1(=
Yno—i) < g for i = 0,...,k — 1, then we can choose c1,d; such that e < ¢; <
Yno—i < di < g. Then from Figure 3, we see that as j increases, c¢; and d;

converge to xg. Thus, SS"I converges to xg.

3 Examples

3.1 Fibonacci, Lucas, and Pell sequences

In the case where k = 2 and a; and as are any natural numbers, a generalized
Fibonacci-like sequence {S,,} defined by (1.1) is expressed as

Spn =a1S,-1 +a2S,_2 forn > 2, (3.1)

where S7 is any natural number and Sy is a non-negative integer. The corre-
sponding function h(x) defined by (1.7) is as follows:

h(z) = ar + ‘;i (3.2)



This case includes Fibonacci numbers (k = 2,417 = a2 = 1,50 = 0,5, = 1)
[1], Lucas numbers (k = 2,a1 = as = 1,59 = 2,51 = 1) [3], and Pell numbers
(k=2,a10 = 2,a2 =1,5) =0,5 = 1) [2]. By substituting function (3.2) for
h(x) in equation (1.8), we obtain

22 — a1z —as = 0. (3.3)
The only one real positive solution x to equation (3.3) is as follows:

_ aj + +/a? + 4as (3.4)
D E— )

Lo

Corollary 3.1. The ratio SS: of the sequence defined by (3.1) converges to xg

expressed by (3.4).

Proof. If the function h(z) defined by (3.2) is not simple, there exist two real
positive numbers e, g such that

g=ay+ 22 #e, and (3.5)
e
a

e:a1+32 #+ xp. (3.6)
These equations lead to e = g, which means that the function h(x) defined by
(3.2) is simple. Thus from Theorem 2.1 we see that the ratio Ss—_l converges to
xo- O

3.2 A case where £k is any integer
In the case where k is any integer > 2 and a1 = as = --- = a; = 1, a generalized

Fibonacci-like sequence {S,} defined by (1.1) and the corresponding function
h(x) defined by (1.7) are as follows:

Sn=8,_1+Sp_o+--+8,_r forn>k, (37)
1 1 1
M@ =142+ L L
(l)k _1 (3.8)
=TT

x

Corollary 3.2. The ratio SSL of the sequence defined by (3.7) converges to

xo, which is the real positive solution to equation (1.8), where h(x) is defined by
(3.8).

Proof. We denote function (3.8) as hi(z) and suppose that the function hy(x)
is not simple. Then there exist at lease two positive real numbers e and g such
that

10



g:hMQZAngf#a (3.9)
e = hy(g) = (%)’:1 + 0. (3.10)

From (3.9) and CilO)itfoHowsthatg
oC-D=() -1 s g(C-)+1=(D)5 @)
4241):(?kf1,tmm 6644)+1:($ (3.12)

)k
Here we multiply the both sides of the second equations of (3.11) and (3.12)
by e and g, respectively. Then we obtain

1\ k-1

g—eg+e=(2) (3.13)
Tik—1
e—eg+g= (5) . (3.14)
Comparing (3.13) and (3.14), we see that
1 k- 1 k—
(7)]~c t= (f)k ', thatis, e= g. (3.15)
€ g
This means that the function hy(x) is simple. Thus from Theorem 2.1 it follows
that the ratio Sfjl converges to xg. O
Then suppose that k =6 and Sg = S =--- =55 =11n (3.7) and (3.8). In

this case, equation (1.8) will be

11 1 1
Sttt (3.16)

1
v +x A 7

We calculated the only one real positive solution xg to (3.16), which was ap-
proximately 1.984. We also calculated the ratio SS—:‘I of the sequence (3.7) for

n=6,7,8,.... The calculation shows that the ratio converges to xg.
Note that the ratio converges to xg regardless of the values of Sy,..., S5,
provided that Sy, ..., S; are non-negative integers and S5 is a natural number.

3.3 A case having a non-simple function

In the case where k = 3, a1 = az = 1, a3 = 10, a generalized Fibonacci-like
sequence {5, } defined by (1.1) and the corresponding function defined by (1.7)
are as follows:

Sn=8,-1+8,2+10-5,_3 forn >3, (3.17)
1 10

h =14 -+ —. 3.18

@=1+242 (3.18)

We denote function (3.18) as hs(z).

11



Lemma 3.3. The function hz(x) is not simple in the sense of Definition 1.6.

Proof. Suppose that there exist two real positive numbers e and g such that

1 10
g:hg(e):1+g+€—2>e, (3.19)
1 10
e=h3(g)=14+-+—. 3.20
3( ) g gQ ( )
By solving (3.19) and (3.20), we have
9 — V41 9+ v41
e=—0— 9= % (3.21)

This means that equation (1.11), where h(z) = hs(z), has two real positive
solutions e, g other than z. O

Thus, Theorem 2.1 does not hold for the sequence defined by (3.17). We
calculated the only one real positive solution z to the equation z = hg(x),
which was approximately 2.720. Then, under the assumption that Sy = 51 =
So = 1, we also calculated the ratio Siil of the sequence (3.17) for n=3,4,5,....
According to the calculation, as n increases the ratio seems to fluctuate about
xg, or at least converge very slowly to zg.

4 A case where a; =0

Let k be any integer > 3, and suppose that a1 =0, a2 = a3 = --- = a; = 1.
Then, another Fibonacci-like sequence {P,} is defined by

P,=P, s+P, 3+ ---+P,_, forn>k, (4.1)

where Pj_q and Pj;_» are natural numbers and P;(i = 0,1,...,k — 3) are non-
negative integers. The sequence {P,} includes Padovan sequence (k = 3,a; =

0,a2 =a3=1,Py =P, =P, =1) [4].
By substituting x for ;%(z =0,1,...,k — 1) in the sequence (4.1), an

1—1
equation for determining x is expressed as

1 1 1
This equation can also be derived by puttinga; =0andas =as=---=a =1

in equation (1.6).

Here we denote the only one real positive solution to (4.2) as xg. It can be
easily verified that xo > 1. Further we define the right-side function of (4.2) as
a function p(z), namely

px)=—+— 4+ = . (4.3)

12
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Figure 4: An example of a function p(x) and its inverse function p=!(x)

In order to check whether the function p(z) is simple or not in the sense of
Definition 1.6, using two real positive numbers e, g, we put

g=ple) = ?, (4.4)
1V 1
c=plg)= 52 (45)

From (4.4) and (4.5) we obtain that e = g = xg. Thus, since the equation
x = p(p(x)) has no real positive solution other than zg, the function p(z) is
simple.

However, in order to check whether z < p(p(z)) in ¢ < ¢ or not, by replacing
z in (4.3) by 1, we have p(1) = k — 1. Then, since k > 3, it follows that

Po(1) = =7 + o+ e

(4.6)
<

x(k—1)=1.

This means that if © < xg, then p(p(z)) < x as shown in Figure 4. If we
define that ¢; < zo, ¢j+1 = p(p(c;)) and o < dj, dj+1 = p(p(d;)), then from
Figure 4, we see that c¢;11 < ¢; and d; < dj4;. Thus, as j increases, ¢; and d;
move away from xg.
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Hence, Lemma 1.7 and Theorem 2.1 do not hold for the sequence {P,}
defined by (4.1).
The audience are encouraged to develop a method to deal with the sequence

{Pn}-
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