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Abstract

A generalized Fibonacci-like sequence {Sn}(for n ≥ k) is defined by

a1Sn−1 + a2Sn−2 + · · · + akSn−k. By substituting x for
Sn−i

Sn−1−i

(i =

0, 1, . . . , k − 1) in the sequence, an equation for determining x is derived
in the form of x = h(x). The equation has only one real positive solution
x0. It is proved that the ratio Sn

Sn−1

converges to x0 regardless of the val-

ues of Sk−1, . . . , S0 under the condition that the function h(x) has certain
properties. It is shown that Fibonacci, Lucas, and Pell sequences satisfy
the condition.

MSC-class: 11B39 (Primary); 40A05, 97A20 (Secondary)

1 Definitions and Lemmas

Let k be any integer ≥ 2, and a1 and ak be natural numbers. And suppose that
other ai(i = 2, . . . , k − 1) are non-negative integers.

Then, a generalized Fibonacci-like sequence {Sn} is defined by

Sn = a1Sn−1 + a2Sn−2 + · · · + akSn−k, for n ≥ k, (1.1)

where Si(i = 0, 1, . . . , k − 2) are any non-negative integers, and Sk−1 is any
natural number. The sequence {Sn} includes Fibonacci numbers [1], Lucas
numbers [3], and Pell numbers [2].

Here, we assume that as n increases the ratio Sn

Sn−1

converges to a real number

x. To determine x, let us write

Sn

Sn−1
=

Sn−1

Sn−2
=

Sn−2

Sn−3
= · · · =

Sn−(k−1)

Sn−k

= x. (1.2)

Relations (1.2) can be rewritten as

Sn−(k−1) = xSn−k, (1.3)
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Sn−(k−2) = xSn−(k−1) = x2Sn−k, (1.3-1)

Sn−(k−3) = xSn−(k−2) = x3Sn−k, (1.3-2)

and finally
Sn = xSn−1 = xkSn−k. (1.3-(k-1))

By putting relations (1.3) to (1.3-(k-1)) in (1.1), we obtain

xkSn−k =

k−1
∑

i=1

aix
k−iSn−k + akSn−k. (1.4)

Dividing both sides of (1.4) by Sn−k yields an equation

xk = a1x
k−1 + a2x

k−2 + · · · + ak−1x + ak. (1.5)

Lemma 1.1. Equation (1.5) has only one real solution in the range x > 0.

Proof. We divide the both sides of (1.5) by xk−1. Hence we obtain

x = a1 +
a2

x
+

a3

x2
+ · · · + ak

xk−1
, (1.6)

where a1 and ak are natural numbers and other ai(i = 2, 3, . . . , k − 1) are non-
negative integers. In the range x > 0, since the right side of (1.6) decreases
strictly from infinity to a1 as x increases from 0, equation (1.6) has only one
real positive solution and so does equation (1.5).

Definition 1.2. We define the right-side function of (1.6) as a function h(x),
namely

h(x) = a1 +
a2

x
+

a3

x2
+ · · · + ak

xk−1
. (1.7)

Using the function h(x), equation (1.6) can be rewritten as

x = h(x). (1.8)

Definition 1.3. We define the only one real positive solution to equation (1.5)
or (1.8) as x0, namely

x0 = h(x0). (1.9)

In the case of Fibonacci and Lucas sequences (k = 2, a1 = a2 = 1), equation
(1.5) is reduced to

x2 − x − 1 = 0,

where the real positive solution x0 is the golden ratio: (1 +
√

5)/2.
It is obvious from equation (1.6) that

1 ≤ a1 < x0 < (a1 + a2 + · · · + ak). (1.10)

Here (a1 + a2 + · · ·+ ak) ≥ (a1 +1), for at least a1 and ak are natural numbers.
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Figure 1: An example of a simple function h(x) and its inverse function h−1(x)

Remark 1.4. Since the function h(x) is a decreasing function,

if 0 < x < x0, then x0 < h(x), and if x0 < x, then h(x) < x0.

We then introduce a function h(h(x)), a function of the function h(x). We
then put that cj+1 = h(h(cj)) and dj+1 = h(h(dj)), where 0 < cj < x0, x0 < dj ,
and j is any positive integer. Since the function h(h(x)) is an increasing function,
we obtain the following remark.

Remark 1.5. If cj < h(dj) and h(cj) < dj , then

cj+1 < h(dj+1) and h(cj+1) < dj+1.

Further, note that x0 is also one of the solutions to the following equation:

x = h(h(x)). (1.11)

Definition 1.6. If equation (1.11) has no real positive solution other than x0,
then we suppose that the function h(x) defined by (1.7) is “simple”.

Let the function h(x) be NOT simple. Then, there exists a real positive
number e(6= x0) such that e = h(h(e)). In this case, if we put g = h(e) 6= x0,
then e = h(g) and g = h(e) = h(h(g)). Hence, equation (1.11) has at least two
real positive solutions e, g other than x0.

In this case, using the inverse function h−1(x) of the function h(x), the
relations g = h(e) and e = h(g) can be rewritten as

g = h−1(e) = h(e) and e = h−1(g) = h(g). (1.12)
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This means that if the function h(x) is simple, h(x) and h−1(x) never cross at
any point other than x0 in the range x > 0 as shown in Figure 1.

We then use the above-mentioned definitions cj+1 = h(h(cj)) and dj+1 =
h(h(dj)), where 0 < cj < x0 and x0 < dj . Referring to Figure 1, under the
condition that the function h(x) is simple, if x < x0, then h(x) < h−1(x),
and if x0 < x, then h−1(x) < h(x). Hence, since h(cj) = h−1(cj+1), we have
cj < cj+1 < x0. Similarly, since h(dj) = h−1(dj+1), we have x0 < dj+1 < dj .
Thus, as j increases, the numbers cj and dj converge to x0. These are proved
as follows:

Lemma 1.7. Let the function h(x) be simple. And suppose that cj+1 = h(h(cj))
and dj+1 = h(h(dj)), where 0 < cj < x0 and x0 < dj. Then

cj < cj+1 < x0 and x0 < dj+1 < dj .

Proof. First, from Remark 1.4, we have x0 < h(ci). Then by applying Remark
1.4 once more, we have h(h(cj)) = cj+1 < x0. In the same way, we have
h(dj) < x0, which leads to x0 < h(h(dj)) = dj+1. Second, let us define that

H(x) = x − h(h(x)). (1.13)

When x increases from 0 to infinity, as the function h(x) decreases from
infinity to a1(≥ 1) , the function h(h(x)) increases from a1 to h(a1) . Thus,
H(x) < 0 when 0 < x ≤ 1, and H(x) > 0 at infinity. Further, H(x0) = 0, for
h(h(x0)) = h(x0) = x0.

Then, since h(x) is simple, H(x) never reaches 0 other than x0. Hence, we
see that if 0 < x < x0, then H(x) < 0, and if x0 < x, then H(x) > 0. This
means that cj < cj+1 and dj+1 < dj , establishing Lemma 1.7.

Lemma 1.8. We assume the same conditions as in Lemma 1.7 and that 0 <
c1 < x0 and x0 < d1. Then, as j increases, the numbers cj and dj converge to

x0.

Proof. It follows from Lemma 1.7 that

c1 < c2 < · · · < cj−1 < cj < x0 < dj < dj−1 < · · · < d2 < d1. (1.14)

Thus, by the Weierstrass’ theorem the sequence {cj} converges to sup{cj}.
Suppose that sup{cj} = cs < x0, then there exists a number c such that c <
cs < h(h(c)) < x0. Then if we put that 0 < ε < cs − c, then c < cs − ε and
there is an integer j0, which satisfies the following relation:

c < cs − ε < cj0 < cs and cs < h(h(c)) < h(h(cj0)) = cj0+1 < x0. (1.15)

This means that cs is not sup{cj} and x0 is sup{cj}. Thus, cj converges to x0.
On the contrary, the sequence {dj} converges to inf{dj}, which is x0.

If equation (1.11) has one pair of real positive solutions other than x0 as
shown in Figure 2, the function h(x) is not simple. From Figure 2, we see
that cj+1 = h(h(cj)) < cj < x0, and x0 < dj < h(h(dj)) = dj+1. Thus, as j
increases, cj and dj move away from x0.
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Figure 2: An example of a non-simple function h(x) and its inverse function
h−1(x)

2 A Theorem and the proof

Theorem 2.1. In a generalized Fibonacci-like sequence {Sn} defined by (1.1),
suppose that the function h(x) defined by (1.7) is simple in the sense of Defini-

tion 1.6. Then, as n increases the ratio Sn

Sn−1

converges to x0, where x0 is the

only one real positive solution to equation (1.8) or (1.5).

Proof. First, since a1 and Sk−1 are natural numbers in (1.1), if n ≥ k, then
Sn ≥ 1. Further since ak is also a natural number, if n ≥ 2k, then

Sn ≥ a1Sn−1 + akSn−k > a1Sn−1. (2.1)

From (2.1) it follows that

Sn

Sn−1
> a1 ≥ 1, for n ≥ 2k. (2.2)

Here, suppose that n ≥ 3k and let us write

Sn−i

Sn−(i+1)
= yn−i > a1, for i = 0, 1, . . . , k − 1. (2.3)

Relations (2.3) can be rewritten as

Sn−(k−1) = yn−(k−1)Sn−k, (2.4)
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Sn−(k−2) = yn−(k−2)Sn−(k−1) = yn−(k−2)yn−(k−1)Sn−k, (2.4-1)

Sn−(k−3) = yn−(k−3)Sn−(k−2) = yn−(k−3)yn−(k−2)yn−(k−1)Sn−k, (2.4-2)

and finally

Sn = ynSn−1 = ynyn−1yn−2 · · · yn−(k−2)yn−(k−1)Sn−k. (2.4-(k-1))

By putting relations (2.4) to (2.4-(k-1)) in (1.1), we obtain

ynyn−1 · · · yn−(k−1)Sn−k =
k−1
∑

i=1

aiyn−iyn−(i+1) · · · yn−(k−1)Sn−k + akSn−k.

(2.5)
Dividing both sides of (2.5) by

yn−1yn−2 · · · yn−(k−1)Sn−k

leads to

yn = a1 +
a2

yn−1
+

a3

yn−1yn−2
+ · · · + ak

yn−1yn−2 · · · yn−(k−1)
, (2.6)

which is equivalent to the sequence {Sn} defined by (1.1). It should be noted
that by replacing each yi(i = n− 1, n− 2, . . . , n− (k− 1)) by x in the right side
of (2.6) we obtain the function h(x) defined by (1.7).

Second, considering (2.2) and (2.6), we see that

1 ≤ a1 < yn < (a1 + a2 + · · · + ak), for n ≥ 3k. (2.7)

Comparing (1.10) and (2.7), we can choose two real numbers c1 and d1 such
that

1 < c1 < yn < d1 for n = 3k, 3k + 1, . . . , 4k − 1, (2.8)

1 ≤ a1 < c1 < x0 < d1 < (a1 + a2 + · · · + ak). (2.9)

The inequality (2.8) leads to

1

d1
<

1

yn

<
1

c1
for n = 3k, 3k + 1, . . . , 4k − 1. (2.10)

By putting inequality (2.10) in (2.6) we see that

a1 +
a2

d1
+

a3

d2
1

+ · · ·+ ak

dk−1
1

< yn < a1 +
a2

c1
+

a3

c2
1

+ · · ·+ ak

ck−1
1

for n = 4k. (2.11)

Using the function h(x) defined by (1.7), inequality (2.11) can be expressed
as

h(d1) < yn < h(c1) for n = 4k. (2.12)

Here, by substituting d1 and c1 for x in (1.7), respectively, it follows that

a1 < h(d1) and h(c1) < (a1 + a2 + · · · + ak).
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We then put that cj+1 = h(h(cj)) and dj+1 = h(h(dj)), where j is any
positive integer. By comparing (2.8) and (2.12), the numbers c1 and d1 are
classified into three cases:
Case 1 where c1 < h(d1) and h(c1) < d1,
Case 2 where h(d1) < c1 and h(c1) < d1, and
Case 3 where c1 < h(d1) and d1 < h(c1).

It should be noted that there is no case where h(d1) < c1 and d1 < h(c1).
Because if h(d1) < c1, then h(c1) < h(h(d1)). Considering Lemma 1.7, we see
that h(h(d1)) < d1 and hence h(c1) < d1.

(Case 1 where c1 < h(d1) and h(c1) < d1)

In this case, from Remark 1.5, cj < h(dj) and h(cj) < dj for any positive
integer j. And since h(x) is a decreasing function, it follows that

dj+1 = h(h(dj)) < h(cj) and h(dj) < h(h(cj)) = cj+1. (2.13)

Then, inequality (2.8), combined with inequality (2.12), leads to

c1 < h(d1) < yn < h(c1) < d1 for n = 4k, 4k + 1, . . . , 5k − 1. (2.14)

Inequality (2.14) leads to

1

h(c1)
<

1

yn

<
1

h(d1)
for n = 4k, 4k + 1, . . . , 5k − 1. (2.15)

By putting inequality (2.15) in (2.6) and using the function h(x), we see that

c2 = h(h(c1)) < yn < h(h(d1)) = d2 for n = 5k. (2.16)

We then apply Lemma 1.7 and inequality (2.13) to (2.14) and (2.16). This leads
to

c1 < h(d1) < c2 < yn < d2 < h(c1) < d1 for n = 5k, . . . , 6k − 1. (2.17)

By repeating the above-mentioned process, when n ≥ (2j +1)k, the number
yn is expressed as

c1 < c2 < · · · < cj < yn < dj < · · · < d2 < d1. (2.18)

According to Lemma 1.8, as j increases, the number cj and dj converge to x0

in (2.18), and so does yn.

(Case 2 where h(d1) < c1 and h(c1) < d1)

In this case, from Lemma 1.7, dj+1 < dj . And considering that h(x) is a
decreasing function,we see

h(dj) < h(dj+1) (2.19)
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Then, inequality (2.12) can be expressed as

h(d1) < yn < h(c1) < d1 for n = 4k. (2.20)

Since h(d1) < c1, inequalities (2.8) and (2.20) can be unified into

h(d1) < yn < d1 for n = 3k + 1, 3k + 2, . . . , 4k. (2.21)

Inequality (2.21) leads to

1

d1
<

1

yn

<
1

h(d1)
for n = 3k + 1, 3k + 2, . . . , 4k. (2.22)

By putting inequality (2.22) in (2.6) and using the function h(x), we see that

h(d1) < yn < h(h(d1)) = d2 for n = 4k + 1. (2.23)

Applying Lemma 1.7 to (2.21) and (2.23) yields

h(d1) < yn < d2 < d1 for n = 4k + 1, 4k + 2, . . . , 5k. (2.24)

Inequality (2.24) leads to

1

d2
<

1

yn

<
1

h(d1)
for n = 4k + 1, . . . , 5k (2.25)

By putting inequality (2.25) in (2.6) and using the function h(x), we see that

h(d2) < yn < h(h(d1)) = d2 for n = 5k + 1. (2.26)

Considering inequality (2.19) and Lemma 1.7, inequalities (2.24) and (2.26)
lead to

h(d1) < h(d2) < yn < d2 < d1 for n = 5k + 1, 5k + 2, . . . , 6k. (2.27)

By repeating the above-mentioned process, when n ≥ ((2j + 1)k + 1), the
number yn is expressed as

h(d1) < h(d2) < · · · < h(dj) < yn < dj < · · · < d2 < d1. (2.28)

According to Lemma 1.8, as j increases, the number dj converges to x0 in (2.28),
and so do h(dj) and yn.

(Case 3 where c1 < h(d1) and d1 < h(c1))

In this case, by analogy with Case 2, we see that when n ≥ ((2j + 1)k + 1),
the number yn is expressed as

c1 < c2 < · · · < cj < yn < h(cj) < · · · < h(c2) < h(c1). (2.29)

According to Lemma 1.8, as j increases, the number cj converges to x0 in (2.29),
and so do h(cj) and yn.
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Figure 3: Another example of a non-simple function h(x) and its inverse function
h−1(x)

There may be cases where even if the function h(x) is not simple in the sense
of Definition 1.6, the ratio Sn

Sn−1

converges to x0. For example, if equation (1.11)

has two pairs of real positive solutions other than x0 as shown in Figure 3, the
function h(x) is not simple. In this case, we denote the two solutions nearest to
x0 as e and g, and if there exits a number n0 such that e < Sn0−i/Sn0−i−1(=
yn0−i) < g for i = 0, . . . , k − 1, then we can choose c1, d1 such that e < c1 <
yn0−i < d1 < g. Then from Figure 3, we see that as j increases, cj and dj

converge to x0. Thus, Sn

Sn−1

converges to x0.

3 Examples

3.1 Fibonacci, Lucas, and Pell sequences

In the case where k = 2 and a1 and a2 are any natural numbers, a generalized
Fibonacci-like sequence {Sn} defined by (1.1) is expressed as

Sn = a1Sn−1 + a2Sn−2 for n ≥ 2, (3.1)

where S1 is any natural number and S0 is a non-negative integer. The corre-
sponding function h(x) defined by (1.7) is as follows:

h(x) = a1 +
a2

x
. (3.2)
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This case includes Fibonacci numbers (k = 2, a1 = a2 = 1, S0 = 0, S1 = 1)
[1], Lucas numbers (k = 2, a1 = a2 = 1, S0 = 2, S1 = 1) [3], and Pell numbers
(k = 2, a1 = 2, a2 = 1, S0 = 0, S1 = 1) [2]. By substituting function (3.2) for
h(x) in equation (1.8), we obtain

x2 − a1x − a2 = 0. (3.3)

The only one real positive solution x0 to equation (3.3) is as follows:

x0 =
a1 +

√

a2
1 + 4a2

2
. (3.4)

Corollary 3.1. The ratio Sn

Sn−1

of the sequence defined by (3.1) converges to x0

expressed by (3.4).

Proof. If the function h(x) defined by (3.2) is not simple, there exist two real
positive numbers e, g such that

g = a1 +
a2

e
6= e, and (3.5)

e = a1 +
a2

g
6= x0. (3.6)

These equations lead to e = g, which means that the function h(x) defined by
(3.2) is simple. Thus from Theorem 2.1 we see that the ratio Sn

Sn−1

converges to

x0.

3.2 A case where k is any integer

In the case where k is any integer ≥ 2 and a1 = a2 = · · · = ak = 1, a generalized
Fibonacci-like sequence {Sn} defined by (1.1) and the corresponding function
h(x) defined by (1.7) are as follows:

Sn = Sn−1 + Sn−2 + · · · + Sn−k for n ≥ k, (3.7)

h(x) = 1 +
1

x
+

1

x2
+ · · · + 1

xk−1

=
( 1

x
)k − 1

1
x
− 1

.
(3.8)

Corollary 3.2. The ratio Sn

Sn−1

of the sequence defined by (3.7) converges to

x0, which is the real positive solution to equation (1.8), where h(x) is defined by

(3.8).

Proof. We denote function (3.8) as hk(x) and suppose that the function hk(x)
is not simple. Then there exist at lease two positive real numbers e and g such
that
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g = hk(e) =
( 1

e
)k − 1

1
e
− 1

6= e, (3.9)

e = hk(g) =
( 1

g
)k − 1

1
g
− 1

6= x0. (3.10)

From (3.9) and (3.10) it follows that

g
(1

e
− 1

)

=
(1

e

)k − 1, thus, g
(1

e
− 1

)

+ 1 =
(1

e

)k
, (3.11)

e
(1

g
− 1

)

=
(1

g

)k − 1, thus, e
(1

g
− 1

)

+ 1 =
(1

g

)k
. (3.12)

Here we multiply the both sides of the second equations of (3.11) and (3.12)
by e and g, respectively. Then we obtain

g − eg + e =
(1

e

)k−1
, (3.13)

e − eg + g =
(1

g

)k−1
. (3.14)

Comparing (3.13) and (3.14), we see that

(1

e

)k−1
=

(1

g

)k−1
, that is, e = g. (3.15)

This means that the function hk(x) is simple. Thus from Theorem 2.1 it follows
that the ratio Sn

Sn−1

converges to x0.

Then suppose that k = 6 and S0 = S1 = · · · = S5 = 1 in (3.7) and (3.8). In
this case, equation (1.8) will be

x = 1 +
1

x
+

1

x2
+

1

x3
+

1

x4
+

1

x5
. (3.16)

We calculated the only one real positive solution x0 to (3.16), which was ap-
proximately 1.984. We also calculated the ratio Sn

Sn−1

of the sequence (3.7) for

n=6,7,8,. . . . The calculation shows that the ratio converges to x0.
Note that the ratio converges to x0 regardless of the values of S0, . . . , S5,

provided that S0, . . . , S4 are non-negative integers and S5 is a natural number.

3.3 A case having a non-simple function

In the case where k = 3, a1 = a2 = 1, a3 = 10, a generalized Fibonacci-like
sequence {Sn} defined by (1.1) and the corresponding function defined by (1.7)
are as follows:

Sn = Sn−1 + Sn−2 + 10 · Sn−3 for n ≥ 3, (3.17)

h(x) = 1 +
1

x
+

10

x2
. (3.18)

We denote function (3.18) as h3(x).
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Lemma 3.3. The function h3(x) is not simple in the sense of Definition 1.6.

Proof. Suppose that there exist two real positive numbers e and g such that

g = h3(e) = 1 +
1

e
+

10

e2
> e, (3.19)

e = h3(g) = 1 +
1

g
+

10

g2
. (3.20)

By solving (3.19) and (3.20), we have

e =
9 −

√
41

2
, g =

9 +
√

41

2
. (3.21)

This means that equation (1.11), where h(x) = h3(x), has two real positive
solutions e, g other than x0.

Thus, Theorem 2.1 does not hold for the sequence defined by (3.17). We
calculated the only one real positive solution x0 to the equation x = h3(x),
which was approximately 2.720. Then, under the assumption that S0 = S1 =
S2 = 1, we also calculated the ratio Sn

Sn−1

of the sequence (3.17) for n=3,4,5,. . . .

According to the calculation, as n increases the ratio seems to fluctuate about
x0, or at least converge very slowly to x0.

4 A case where a1 = 0

Let k be any integer ≥ 3, and suppose that a1 = 0, a2 = a3 = · · · = ak = 1.
Then, another Fibonacci-like sequence {Pn} is defined by

Pn = Pn−2 + Pn−3 + · · · + Pn−k, for n ≥ k, (4.1)

where Pk−1 and Pk−2 are natural numbers and Pi(i = 0, 1, . . . , k − 3) are non-
negative integers. The sequence {Pn} includes Padovan sequence (k = 3, a1 =
0, a2 = a3 = 1, P0 = P1 = P2 = 1) [4].

By substituting x for Pn−i

Pn−1−i

(i = 0, 1, . . . , k − 1) in the sequence (4.1), an

equation for determining x is expressed as

x =
1

x
+

1

x2
+ · · · + 1

xk−1
. (4.2)

This equation can also be derived by putting a1 = 0 and a2 = a3 = · · · = ak = 1
in equation (1.6).

Here we denote the only one real positive solution to (4.2) as x0. It can be
easily verified that x0 > 1. Further we define the right-side function of (4.2) as
a function p(x), namely

p(x) =
1

x
+

1

x2
+ · · · + 1

xk−1
=

( 1
x
)k − 1

x
1
x
− 1

. (4.3)
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Figure 4: An example of a function p(x) and its inverse function p−1(x)

In order to check whether the function p(x) is simple or not in the sense of
Definition 1.6, using two real positive numbers e, g, we put

g = p(e) =
( 1

e
)k − 1

e
1
e
− 1

, (4.4)

e = p(g) =
( 1

g
)k − 1

g

1
g
− 1

. (4.5)

From (4.4) and (4.5) we obtain that e = g = x0. Thus, since the equation
x = p(p(x)) has no real positive solution other than x0, the function p(x) is
simple.

However, in order to check whether x < p(p(x)) in x < x0 or not, by replacing
x in (4.3) by 1, we have p(1) = k − 1. Then, since k ≥ 3, it follows that

p(p(1)) =
1

k − 1
+

1

(k − 1)2
+ · · · + 1

(k − 1)k−1

<
1

k − 1
× (k − 1) = 1.

(4.6)

This means that if x < x0, then p(p(x)) < x as shown in Figure 4. If we
define that cj < x0, cj+1 = p(p(cj)) and x0 < dj , dj+1 = p(p(dj)), then from
Figure 4, we see that cj+1 < cj and dj < dj+1. Thus, as j increases, cj and dj

move away from x0.
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Hence, Lemma 1.7 and Theorem 2.1 do not hold for the sequence {Pn}
defined by (4.1).

The audience are encouraged to develop a method to deal with the sequence
{Pn}.
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