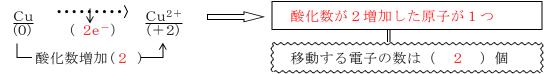
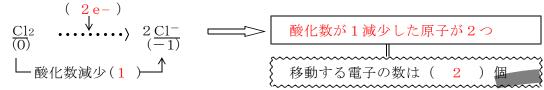

N.O.33 (表 2)

「酸化される」とは・・・ 酸化数が増加すること。電子を失うこと。「還元される」とは・・・ 酸化数が減少すること。電子をもらうこと。


≪酸化数の増減数と移動する電子の数の関係はどのようになるのか?≫

(例) 銅と塩素の反応



----- 反応を2つに分けて考えると ---

① Cuが酸化される反応は・・・

② Clが還元される反応は・・・

[ポイント]

移動する電子の数は(酸化数の変化量)×(その原子の数)と同じ

---- 主な酸化剤と還元剤の(反応に伴って)移動する電子の数を求めよう

	物質名	反応に伴う変化	もらう電子数
酸	過マンガン酸カリウム KMnO4	$\begin{array}{ccc} \operatorname{KMnO}_4 & \cdots & \operatorname{Mn}^{2+} \\ \stackrel{+7}{($	5×1=5 個
	二 クロム酸カリウム K2Cr2O7	$K_2Cr_2O_7$ ····〉 $2Cr^{3+}$ (赤橙色) \rightarrow (緑 色)	3×2=6 個
化	過酸化水素 H2O2	$\begin{array}{ccc} \text{H}_2\text{O}_2 & \cdots \rangle & 2\text{H}_2\text{O} \\ -1 & -2 \end{array}$	1×2=2 個
	塩素 Cl2	$Cl_2 \qquad \cdots \rangle \qquad 2 Cl^- \\ 0 \qquad \qquad -1$	1×2=2 個
剤	濃硝酸 HNO3	$\begin{array}{ccc} \text{HNO}_3 & \cdots & \text{NO}_2 \\ +5 & +4 \end{array}$	1×1=1 個
	希硝酸 HNO3	$\begin{array}{ccc} \text{HNO}_3 & \cdots & \text{NO} \\ +5 & +2 \end{array}$	3×1=3 個

	物 質 名	反応に伴う変化	失う電子数
還	金属 (例: 銅 Cu)	$\begin{array}{ccc} \operatorname{Cu} & \cdots & \operatorname{Cu}^{2+} \\ & & +2 \end{array}$	2×1=2 個
	硫化水素 H2S	$\begin{array}{ccc} \text{H}_2\text{S} & \cdots & \text{S} \\ -2 & & 0 \end{array}$	2×1=2 個
元	過酸化水素 H2O2	$\begin{array}{ccc} \text{H}_2\text{O}_2 & \cdots & \text{O}_2 \\ \hline -1 & & 0 \end{array}$	1×2=2 個
	ヨウ化カリウム KI	$2 \text{ KI} \qquad \cdots \rangle \qquad \text{I}_2 \qquad \qquad$	1×2=2 個
剤	二酸化イオウ SO2	$\begin{array}{ccc} \operatorname{SO}_2 & \cdots & \operatorname{SO}_4{}^{2-} \\ +4 & +6 \end{array}$	2×1=2 個
	シュウ酸 H ₂ C ₂ O ₄	$\begin{array}{ccc} \text{H}_2\text{C}_2\text{O}_4 & \cdots \rangle & 2\text{CO}_2 \\ +3 & +4 \end{array}$	1×2=2 個

D 酸化剤と還元剤の量の関係(重要)

酸化剤がもらう電子の合計数)=(還元剤が失う電子の合計数

次の酸化剤と還元剤の量の関係(モル数の比)を求めよう(表1、表2を利用)

① 過マンガン酸カリウムと過酸化水素	② 二 クロム酸カリウムと過酸化水素	
KMnO4 ・・・・ 〉 Mn ²⁺ 電子5個×(2) 同じにする H ₂ S ・・・・ 〉 S 電子2個×(5)	_ ` "	
$KMnO4$: $H_2S = 2$ モル: 5 モル	$K_2Cr_2O_7$: $H_2O_2 = 1$ モル : 3 モル	
③ 塩素と二酸化イオウ	④ 過酸化水素と硫化水素	
Cl_2 ····〉 $2 Cl^-$ 電子 2 個 \times (1) SO_2 ····〉 SO_4^{2-} 電子 2 個 \times (1) Cl_2 : SO_2 = 1 モル : 1 モル	H_2O_2 ·····〉 $2H_2O$ 電子 2 個 \times (1) H_2S ·····〉 S 電子 2 個 \times (1) H_2O_2 : H_2S = 1 モル : 1 モル	
⑤ ヨウ化カリウムと二 クロム酸カリウム	⑥ 過マンガン酸カリウムとシュウ酸	
2 KI ・・・・〉 I2 電子2個× (3) K ₂ Cr ₂ O ₇ ・・・・〉 2 Cr ₃ + 電子6個× (1) 2 KIを 3 倍するので、KIの量は 6 になる KI : K ₂ Cr ₂ O ₇ = 6 モル : 1 モル	KMnO4 ・・・・〉 $Mn2+$ 電子5個× (2) $H_2C_2O_4$ ・・・・〉 $2CO_2$ 電子2個× (5) $KMnO_4$: $H_2C_2O_4 = 2$ モル : 5 モル	

酸化剤と還元剤がちょうど反応するモル数の量の関係を利用すれば、酸化剤や還元剤の溶液の濃度を実験で求めることができる。実験方法は中和滴定と同じように、コニカルビーカー、ホールピペットやビュレットを用いる。この実験方法を「酸化還元滴定」という。