

)へ進化

4 酸化還元反応の利用1 〔電池〕

A ボルタの電池 (希硫酸の中に亜鉛板と銅板を入れた電池) (イオン化列は[Zn>H>Cu])

亜鉛板と銅板を導線でつなぐと

まとめ

- ③ 電子が発生する金属を(負極)、電子を受け取る金属を(正極)とする。
- ① 電池の負極は・・・・(イオン化傾向大)の金属電池の正極は・・・・(イオン化傾向小)の金属
- ⑥ 電池の表し方・・・電解質を | ではさんで、両端に電極の金属と正負を書く。
 (例) ボルタの電池 (aqは水溶液の意味) aq (「アクア」と読む)
 Zn | H2SO4 aq | Cu + 起電力(1.1 V)

で 電解質が液体なので持ち運びにくい ⇒ 乾いた電解質の電池は? ⇒ (乾電池 へ進化) へ進化 ボルタの電池の寿命は・・・(Zn か H+ がなくなる) まで ボルタの電池のように繰り返し使えない電池を (一次電池) という。 ⇒ 繰り返し使える電池は作れないか? ⇒ (蓄電池、充電池) へ進化 (二次電池) という。 ウ ボルタの電池は起電力がしだいに低下する・・・ (電池の 分極) という。 「原因」 その1:負極付近のZn²+の濃度が大きくなり、Znがイオンになりにくくなるため その2:発生したH²がふたたびH+にもどり、起電力を下げるため(逆起電力の発生) その3:(発生した水素が銅板に付着し電気抵抗となる) ⇒ その2、その3の原因をなくすために・・・(水素を酸化して水に変える) (過酸化水素 (酸化剤)) を加える。加える酸化剤を (減極剤) という。

⇒ 分極の起きない電池は作れないか? ⇒ (ダニエル電池